Open Access
Volume 22, Numéro 4, July-August 2015
Numéro d'article D406
Nombre de pages 8
Section Dossier: 12th Euro Fed Lipids Congress: Oils, Fats and Lipids: From Lipidomics to Industrial Innovation
Publié en ligne 31 mars 2015
  • Abayasekara DR, Wathes DC. 1999. Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot. Essent. Fatty Acids 61: 275–287. [CrossRef] [PubMed] [Google Scholar]
  • Andrade J, Khairy P, Dobrev D, Nattel S. 2014. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114: 1453–1468. [CrossRef] [PubMed] [Google Scholar]
  • Burgmaier M, Sen S, Philip F, et al. 2010. Metabolic adaptation follows contractile dysfunction in the heart of obese Zucker rats fed a high-fat “Western” diet. Obesity 18: 1895–1901. [CrossRef] [Google Scholar]
  • Chowdhury R, Warnakula S, Kunutsor S, et al. 2014. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann. Intern. Med. 160: 398–406. [CrossRef] [PubMed] [Google Scholar]
  • Coelho DF, Pereira-Lancha LO, Chaves DS, et al. 2011. Effect of high-fat diets on body composition, lipid metabolism and insulin sensitivity, and the role of exercise on these parameters. Braz. J. Med. Biol. Res. 44: 966–972. [CrossRef] [PubMed] [Google Scholar]
  • Cole MA, Murray AJ, Cochlin LE, et al. 2011. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res. Cardiol. 106: 447–457. [CrossRef] [PubMed] [Google Scholar]
  • Demaison L, Sergiel JP, Moreau D, Grynberg A. 1994. Influence of the phospholipid n-6/n-3 polyunsaturated fatty acid ratio on the mitochondrial oxidative metabolism before and after myocardial ischemia. Biochim. Biophys. Acta 1227: 53–59. [CrossRef] [PubMed] [Google Scholar]
  • Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497–509. [Google Scholar]
  • Gardner PR, Nguyen DD, White CW. 1994. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. Natl Acad. Sci. USA 91: 12248–12252. [CrossRef] [Google Scholar]
  • Habbout A, Li N, Rochette L, Vergely C. 2013a. Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J. Nutr. 143: 553–562. [CrossRef] [PubMed] [Google Scholar]
  • Habbout A, Guenancia C, Lorin J, et al. 2013b. Postnatal overfeeding causes early shifts in gene expression in the heart and long-term alterations in cardiometabolic and oxidative parameters. PLoS One 8: e56981. [CrossRef] [PubMed] [Google Scholar]
  • Juaneda P, Rocquelin G. 1985. Rapid and convenient separation of phospholipids and non phosphorus lipids from rat heart using silica cartridges. Lipids 20: 40–41. [CrossRef] [PubMed] [Google Scholar]
  • Lin CS, Pan CH. 2008. Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation. Cell. Mol. Life Sci. 65: 1489–1508. [CrossRef] [PubMed] [Google Scholar]
  • Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S. 2014. Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc. Diabetol. 13: 118. [CrossRef] [PubMed] [Google Scholar]
  • Mathers CD, Loncar D. 2006. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3: e442. [CrossRef] [PubMed] [Google Scholar]
  • Mourmoura E, Vial G, Laillet B, et al. 2013. Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc. Diabetol. 12: 49. [CrossRef] [PubMed] [Google Scholar]
  • Picard F, dos Santos P, Catargi B. 2013. Diabetes, obesity and heart complications. Rev. Prat. 63: 759–764. [PubMed] [Google Scholar]
  • Romero-Corral A, Montori VM, Somers VK, et al. 2006. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet 368: 666–678. [CrossRef] [PubMed] [Google Scholar]
  • Rosenkranz S. 2004. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc. Res. 63: 423–432. [Google Scholar]
  • Rupp H, Wagner D, Rupp T, Schulte LM, Maisch B. 2004. Risk stratification by the “EPA+DHA level’ and the “EPA/AA ratio” focus on anti-inflammatory and antiarrhythmogenic effects of long-chain omega-3 fatty acids. Herz 29: 673–685. [CrossRef] [PubMed] [Google Scholar]
  • Schlüter KD, Wenzel S. 2008. Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol. Ther. 119: 311–325. [CrossRef] [PubMed] [Google Scholar]
  • Van Baak MA. 2001. The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2: 3–14. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.