Open Access
Volume 20, Numéro 6, November-December 2013
Numéro d'article D606
Nombre de pages 8
Section Dossier: Les micro-organismes producteurs de lipides / Producing micro-organisms lipids
Publié en ligne 22 novembre 2013
  • Andersen RA. 1992. Diversity of eukaryotic algae. Biodivers. Conserv. 1: 267–292. [CrossRef] [Google Scholar]
  • Beer LL, Boyd ES, Peters JW, Posewitz MC. 2009. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 20: 264–271. [CrossRef] [PubMed] [Google Scholar]
  • Bennoun P, Levine RP. 1967. Detecting Mutants That Have Impaired Photosynthesis by Their Increased Level of Fluorescence. Plant Physiol. 42: 1284–1287. [CrossRef] [PubMed] [Google Scholar]
  • Blanc G, Duncan G, Agarkova I, Borodovski M, Gurnon J, Kuo A, et al. 2010. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex. Plant Cell 22: 2943–2955. [CrossRef] [PubMed] [Google Scholar]
  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239–244. [CrossRef] [PubMed] [Google Scholar]
  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, et al. 2012. Three Acyltransferases and Nitrogen-responsive Regulator Are Implicated in Nitrogen Starvation-induced Triacylglycerol Accumulation in Chlamydomonas. J. Biol. Chem. 287: 15811–15825. [CrossRef] [PubMed] [Google Scholar]
  • Campenni L, Nobre BP, Santos CA, Oliveira AC, Aires-Barros MR, Palavra AM, et al. 2013. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl. Microbiol. Biotechnol. 97: 1383–1393. [CrossRef] [PubMed] [Google Scholar]
  • Chia MA, Lombardi AT, Melão MdGG, Parrish CC. 2013. Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquat. Toxicol. 128–129: 171–182. [CrossRef] [PubMed] [Google Scholar]
  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306. [Google Scholar]
  • de la Vega M, Diaz E, Vila M, Leon R. 2011. Isolation of a new strain of Picochlorum sp and characterization of its potential biotechnological applications. Biotechnol. Progress 27: 1535–1543. [CrossRef] [Google Scholar]
  • De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A. 2009. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res. 37: e96 [CrossRef] [PubMed] [Google Scholar]
  • Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G, et al. 2012. An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour. Technol. 111: 191–200. [CrossRef] [PubMed] [Google Scholar]
  • Do Nascimento M, Ortiz-Marquez JCF, Sanchez-Rizza L, Echarte MM, Curatti L. 2012. Bioprospecting for fast growing and biomass characterization of oleaginous microalgae from South-Eastern Buenos Aires, Argentina. Bioresour. Technol. 125: 283–290. [CrossRef] [PubMed] [Google Scholar]
  • Dutcher SK, Li L, Lin H, Meyer L, Giddings TH, Kwan AL, et al. 2012. Whole-genome sequencing to identify mutants and polymorphisms in Chlamydomonas reinhardtii. G3 (Bethesda) 2: 15–22. [Google Scholar]
  • Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C. 2012. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol. 53: 1380–1390. [CrossRef] [PubMed] [Google Scholar]
  • Fan JL, Andre C, Xu CC. 2011. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. Febs Lett. 585: 1985–1991. [CrossRef] [PubMed] [Google Scholar]
  • Gong YM, Hu HH, Gao Y, Xu XD, Gao H. 2011. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J. Ind. Microbiol. Biotechnol. 38: 1879–1890. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Ballester D, Pootakham W, Mus F, Catalanotti C, Magneschi L, et al. 2011. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7: 24. [PubMed] [Google Scholar]
  • Goodson C, Roth R, Wang ZT, Goodenough U. 2011. Structural Correlates of Cytoplasmic and Chloroplast Lipid Body Synthesis in Chlamydomonas reinhardtii and Stimulation of Lipid Body Production with Acetate Boost. Eukaryotic Cell 10: 1592–1606. [CrossRef] [PubMed] [Google Scholar]
  • Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20: 491–515. [Google Scholar]
  • Harris E. 2001. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 363–406. [CrossRef] [PubMed] [Google Scholar]
  • Harwood JL, Guschina IA. 2009. The versatility of algae and their lipid metabolism. Biochimie 91: 679–684. [CrossRef] [PubMed] [Google Scholar]
  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621–639. [CrossRef] [PubMed] [Google Scholar]
  • Kilian O, Benemann CSE, Niyogi KK, Vick B. 2011. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc. Natl. Acad. Sci. USA 108: 21265–21269. [CrossRef] [Google Scholar]
  • Leon R, Fernandez E. 2007. Nuclear transformation of eukaryotic microalgae - Historical overview, achievements and problems. Ado. Exp. Med. Biol. 616: 1–11. [CrossRef] [Google Scholar]
  • Li-Beisson Y, Shorrosh B, Beisson F, et al. 2010. Acyl lipid metabolism In R Last, ed, The Arabidopsis book. American Society of Plant Biologists Rockville, MD. [Google Scholar]
  • Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo M-H, 2012. A Galactoglycerolipid Lipase Is Required for Triacylglycerol Accumulation and Survival Following Nitrogen Deprivation in Chlamydomonas reinhardtii. Plant Cell 24: 4670–4686. [CrossRef] [PubMed] [Google Scholar]
  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q. 2010. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 107: 258–268 [CrossRef] [PubMed] [Google Scholar]
  • Liu B, Benning C. 2013. Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotechnol. 24: 300–309. [CrossRef] [PubMed] [Google Scholar]
  • Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J. 2012. TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr. Opin. Biotechnol. 23: 352–363. [CrossRef] [PubMed] [Google Scholar]
  • Miller R, Wu GX, Deshpande RR, Vieler A, Gartner K, Li XB, et al. 2010. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 154: 1737–1752. [CrossRef] [PubMed] [Google Scholar]
  • Moellering ER, Benning C. 2010. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic Cell 9: 97–106. [CrossRef] [PubMed] [Google Scholar]
  • Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, et al. 2009. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J. 58: 165–174. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen HM, Baudet M, Cuiné S, Adriano J-M, Barthe D, Billon E, et al. 2011. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: With focus on proteins involved in lipid metabolism. Proteomics 11: 4266–4273. [CrossRef] [PubMed] [Google Scholar]
  • Niu YF, Zhang MH, Xie WH, Li JN, Gao YF, Yang WD, et al. 2011. A new inducible expression system in a transformed green alga, Chlorella ulgaris. Genet. Mol. Res. 10: 3427–3434. [CrossRef] [PubMed] [Google Scholar]
  • Ort DR, Zhu XG, Melis A. 2011. Optimizing Antenna Size to Maximize Photosynthetic Efficiency. Plant Physiol. 155: 79–85. [CrossRef] [PubMed] [Google Scholar]
  • Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, et al. 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl. Acad. Sci. USA 104: 7705–7710. [CrossRef] [Google Scholar]
  • Radakovits R, Eduafo PM, Posewitz MC. 2011. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab. Eng. 13: 89–95. [CrossRef] [PubMed] [Google Scholar]
  • Radakovits R, Jinkerson RE, Fuerstenberg SI et al. 2012. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat. Commun. 3: 686 [CrossRef] [PubMed] [Google Scholar]
  • Riekhof WR, Sears BB, Benning C. 2005. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: Discovery of the betaine lipid synthase BTA1(Cr). Eukaryotic Cell 4: 242–252. [CrossRef] [PubMed] [Google Scholar]
  • Rochaix JD. 2002. The three genomes of Chlamydomonas. Photosynth. Res. 73: 285–293. [CrossRef] [PubMed] [Google Scholar]
  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19: 430–436. [CrossRef] [PubMed] [Google Scholar]
  • Scott SA, Davey MP, Dennis JS et al. 2010. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21: 277–286. [CrossRef] [PubMed] [Google Scholar]
  • Shanklin J, Cahoon EB. 1998. Desaturation and related modifications of fatty acids. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49: 611–641. [CrossRef] [PubMed] [Google Scholar]
  • Sheehan J, Dunahay T, Benemann J, Roessler PG. 1998. A look back at the US Department of Energy’s aquatic species program – biodiesel from algae. In US Department of Energy’s Office of Fuels Development, Golden, CO: National Renewable Energy Laboratory. [Google Scholar]
  • Siaut M, Cuine S, Cagnon C et al. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology 11: 7. [CrossRef] [PubMed] [Google Scholar]
  • Siaut M, Heijde M, Mangogna M et al. 2007. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406: 23–35. [CrossRef] [PubMed] [Google Scholar]
  • Tokusoglu O, Unal MK. 2003. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food Sci. 68: 1144–1148. [CrossRef] [Google Scholar]
  • Tolleter D, Ghysels B, Alric J et al. 2011. Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii. Plant Cell 23: 2619–2630. [CrossRef] [PubMed] [Google Scholar]
  • Vieler A, Wu G, Tsai C-H et al. 2012. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 8: e1003064. [CrossRef] [PubMed] [Google Scholar]
  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. 2009. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8: 1856–1868. [CrossRef] [PubMed] [Google Scholar]
  • Wijffels RH, Barbosa MJ. 2010. An Outlook on Microalgal Biofuels. Science 329: 796–799. [CrossRef] [PubMed] [Google Scholar]
  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, et al. 2000. Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 287: 303–305. [CrossRef] [PubMed] [Google Scholar]
  • Yohn C MM, Behnke C, Brand A. 2011. Stress-induced lipid trigger. US Patent. [Google Scholar]
  • Yoon K, Han D, Li Y, Sommerfeld M, Hu Q. 2012. Phospholipid: Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii. Plant Cell 24: 3708–3724. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.