Open Access
Numéro
OCL
Volume 20, Numéro 6, November-December 2013
Numéro d'article D605
Nombre de pages 6
Section Dossier: Les micro-organismes producteurs de lipides / Producing micro-organisms lipids
DOI https://doi.org/10.1051/ocl/2013048
Publié en ligne 22 novembre 2013
  • Aggelis G, Komaitis M. 1999. Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L. aqueous extract. Biotechnol. Lett. 15: 747–749. [CrossRef] [Google Scholar]
  • Arabolaza A, D’Angelo M, Comba S, Gramajo H., Fas R. 2010. a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor. Mol. Microbiol. 78: 47–63. [PubMed] [Google Scholar]
  • Barth G, Gaillardin C. 1997. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 19: 219–237. [CrossRef] [PubMed] [Google Scholar]
  • Babau M, Cescut J, Allouche Y, Lombaert-Valot I, Fillaudeau L, Uribelarrea JL, Molina-Jouve C. 2013. Towards a microbial production of fatty acids as precursors of biokerosene from glucose and xylose, Oil Gas Sci. Technol. DOI: 10.2516/ogst/2013148. [Google Scholar]
  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. 2009a. Yarrowia lipolytica as a model for bio-oil production. Prog. Lip. Res. 48: 375–387. [CrossRef] [Google Scholar]
  • Beopoulos A, Chardot T, Nicaud JM. 2009b. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91: 692–696. [CrossRef] [PubMed] [Google Scholar]
  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM. 2008. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Env. Microbiol. 74: 7779–7789. [CrossRef] [PubMed] [Google Scholar]
  • Beopoulos A, Nicaud JM, Gaillardin C. 2011. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl. Microbiol. Biotechnol. 90: 1193–1206. [CrossRef] [PubMed] [Google Scholar]
  • Cescut J. 2009. Accumulation d’acylglycérols par des espèces levuriennes à usage carburant aéronautique: physiologie et performances de procédés. Toulouse: Université de Toulouse. [Google Scholar]
  • Chisti Y, Moo-Young M. 1986. Disruption of microbial cells for intracellular products. Enzyme Microb. Technol. 8: 194–204. [CrossRef] [Google Scholar]
  • Davis JR, Sello JK. 2010. Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Appl. Microbiol. Biotechnol. 86: 921–929. [Google Scholar]
  • Easterling ER, French WT, Hernandez R, Licha M. 2009. The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Biores. Technol. 100: 356–361. [Google Scholar]
  • Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM. 2005. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 5: 527–543. [CrossRef] [Google Scholar]
  • Finogenova T, Morgunov IG, Kamzolova SV, Chernyavskaya OG. 2005. Organic Acid Production by the Yeast Yarrowia lipolytica: A Review of Prospects. Appl. Biochem. Microbiol. 41: 418–425. [CrossRef] [Google Scholar]
  • Georgieva TI, Hou XR, Hilstrom T, Ahring BK. 2008. Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading. Appl. Biochem. Biotech. 148: 35–44. [CrossRef] [Google Scholar]
  • Granger LM, 1992. Caractérisation cinétique et stœchiométrique de la synthèse d’acide gras chez Rhodotorula glutinis. Toulouse: Institut National des sciences appliquées de Toulouse Granger LM, Perlot P, Goma G, Pareilleux A. 1993. Efficiency of fatty-acid synthesis by oleaginous yeasts – prediction of yield and fatty-acid cell content from consumed c/n ratio by a simple method. Biotechnol. Bioeng. 42: 1151–1156. [Google Scholar]
  • Granger LM, Perlot P, Goma G, Pareilleux A. 1993. Effect of various nutrient limitations on fatty-acid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 38: 784–789. [Google Scholar]
  • Greenwell HC, Laurens LML, Lowitt RJ, Shields RW, Flynn KC. 2010. Placing microalgae on biofuels priority list: A review of technological challenges. J. R. Soc. Interface 7: 7013–726. [CrossRef] [Google Scholar]
  • Hänisch J, Wältermann M, Robenek H, Steinbüchel A. 2006. Eukaryotic lipid body proteins in oleogenous actinomycetes and heir targeting to intracellular triacylglycerol inclusions: impact on models of lipid body biogenesis. Appl. Environ. Microbiol. 72: 6743–6750. [CrossRef] [PubMed] [Google Scholar]
  • Ishizaki A, Tanaka K, Taga N. 2001. Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl. Microbiol. Biotechnol. 57: 6–12. [CrossRef] [PubMed] [Google Scholar]
  • Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C. 2007. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol. Bioeng. 96: 862–870. [CrossRef] [PubMed] [Google Scholar]
  • Kaddor C, Biermann K, Kalscheuer R, Steinbüchel A. 2009. Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Appl. Microbiol. Biotechnol. 84: 143–55. [CrossRef] [PubMed] [Google Scholar]
  • Kim JW, Park TJ, Ryu DD, Kim JY. 2000. High cell density culture of Yarrowia lipolytica using a one-step feeding process. Biotechnol. Prog. 16: 657–660. [CrossRef] [PubMed] [Google Scholar]
  • Kondo A, Ueda M. 2004. Yeast cell-surface display – applications of molecular display. Appl. Microbiol. Biotechnol. 64: 28–40. [CrossRef] [PubMed] [Google Scholar]
  • Li QL, Ling Xue Feiyan, Zhang Xu, Tan Tianwei. 2010. The Utilization of Xylose by Oleaginous Yeast Rhodotorula glutinis. J. Biobased Mat. Bioenergy 4: 53–57. [Google Scholar]
  • Lynd LR, van Zyl WH, McBride JE, Laser M. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16: 577–583. [Google Scholar]
  • Madison LL, Huisman GW. 1999. Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21–53 [PubMed] [Google Scholar]
  • Madzak C, Gaillardin C, Beckerich JM. 2004. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J. Biotechnol. 109: 63–81. [CrossRef] [PubMed] [Google Scholar]
  • Mlícková K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud JM. 2004. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl. Env. Microbiol. 70: 3918–3924. [CrossRef] [PubMed] [Google Scholar]
  • Olukoshi ER, Packter NM. Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140: 931–943. [Google Scholar]
  • Packter NM, Olukoshi ER. 1995. Ultrastructural studies of neutral lipid localisation in Streptomyces. Arch. Microbiol. 164: 420–427. [CrossRef] [PubMed] [Google Scholar]
  • Pan JG, Kwak MY, Rhee JS. 1986. High density cell culture of Rhodotorula glutinis using oxygen-enriched air. Biotechnol. Lett. 8: 715. [CrossRef] [Google Scholar]
  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I. 2003. Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr. Microbiol. 46: 124–130. [CrossRef] [PubMed] [Google Scholar]
  • Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G. 2006. Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr. Microbiol. 52: 134–142. [CrossRef] [PubMed] [Google Scholar]
  • Ptasinski KJ, Kerkhof PJAM. 2006. Electric field driven separation: phenomena and applications. Sep. Sci. Technol. 27: 995–1021 [CrossRef] [Google Scholar]
  • Saenga C, Cheirsilp B, Suksaroge TT, Bourtoom T. 2010. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem. 46: 210. [CrossRef] [Google Scholar]
  • Ratledge C. 2004. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86: 807–815. [CrossRef] [PubMed] [Google Scholar]
  • Ratledge C, Wynn JP. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51: 1–51. [CrossRef] [Google Scholar]
  • Ratledge C. 2005. Single cell oils for the 21st century. In: Z. Cohen and C. Ratledge ed. Single cell oils: microbial and algal oils. Champaign, IL, USA: AOCS Press, 2005, pp. 1–20. [Google Scholar]
  • Rudolf A, Alkasrawi M, Zacchi G, Liden G. 2005. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb. Technol. 37: 195–204. [CrossRef] [Google Scholar]
  • Rupcic J, Blagovic B, Maric V. 1996. Cell lipids of the Candida lipolytica yeast grown on methanol. J. Chromatogr. A 755: 75–80. [CrossRef] [PubMed] [Google Scholar]
  • Schlegel H, Lafferty R. 1971. Novel energy and carbon sources. Adv. Biochem. Eng. 1: 143–168. [CrossRef] [Google Scholar]
  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: 559. [CrossRef] [PubMed] [Google Scholar]
  • Thorpe RF, Ratledge C. 1972. Fatty Acid Distribution in Triglycerides of Yeasts Grown on Glucose or n-Alkanes. Microbiology 72: 151–163. [Google Scholar]
  • Töpfl S. 2006. Pulsed Electric Fields (PEF) for permeabilization of cell membranes in food- and bioprocessing – applications, process and equipment design and cost analysis. Ph.D. Thesis, Fakultät III – Prozesswissenschaften der Technischen Universität Berlin. [Google Scholar]
  • Van Zyl WH, Lynd LR, den Haan R, McBride JE. 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Biofuels 108: 205–235 [CrossRef] [Google Scholar]
  • Varga E, Klinke HB, Reczey K, Thomsen AB. 2004. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol. Bioeng. 88: 567–574. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.