Open Access
Numéro
OCL
Volume 19, Numéro 1, Janvier-Février 2012
Page(s) 22 - 28
Section Dossier : Lipochimie
DOI https://doi.org/10.1051/ocl.2012.0426
Publié en ligne 15 janvier 2012
  • Athenstaedt K, Jolivet P, Boulard C, et al. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 2006 ; 6 : 1450–1459. [CrossRef] [PubMed] [Google Scholar]
  • Bati N, Hammond E, Glatz B. Biomodification of fats and oils: trials with Candida lipolytica. J Am Oil Chem Soc 1984 ; 61 : 1743–1746. [CrossRef] [Google Scholar]
  • Beopoulos A, Haddouche R, Kabran P, et al. Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol 2011: DOI 10.1007/s00253-011-3506-x. available on line. [Google Scholar]
  • Beopoulos A, Mrozova Z, Thevenieau F, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 2008 ; 74 : 7779–7789. [CrossRef] [PubMed] [Google Scholar]
  • Brown DA. Lipid droplets: proteins floating on a pool of fat. Curr Biol 2001 ; 11 : 446–449. [CrossRef] [Google Scholar]
  • Cescut J. Accumulation d’acylglycérols par des espèces levuriennes à usage carburant aéronautique : physiologie et performances de procédés. PhD thesis: Toulouse, Université de Toulouse, 2009: 283 [Google Scholar]
  • Chen X, Li Z, Zhang X, et al. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 2009 ; 159 : 591–604. [CrossRef] [PubMed] [Google Scholar]
  • Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts. Nature 2004 ; 430 : 35–44. [CrossRef] [PubMed] [Google Scholar]
  • Dulermo T, Nicaud JM. Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 2011 ; 13 : 482–491. [CrossRef] [PubMed] [Google Scholar]
  • Eschenfeldt WH, Zhang Y, Samaha H, et al. Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida tropicalis. Appl Environ Microbiol 2003 ; 69 : 5992–5999. [CrossRef] [PubMed] [Google Scholar]
  • Fickers P, Benetti PH, Wache Y, et al. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 2005 ; 5 : 527–543. [CrossRef] [PubMed] [Google Scholar]
  • Fujimoto T, Ohsaki Y, Cheng J, et al. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 2008 ; 130 : 263–279. [CrossRef] [PubMed] [Google Scholar]
  • Garcia Sanchez R, Karhumaa K, Fonseca C, et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 2010 ; 3 : 13. [CrossRef] [PubMed] [Google Scholar]
  • Granger L. Caractérisation cinétique et stoechiometrique de la synthèse d’acide gras chez Rhodotorula glutinis. Toulouse, Institut National des sciences appliquées de Toulouse. PhD thesis, 1992: 247 [Google Scholar]
  • Haddouche R, Delessert S, Sabirova J, et al. Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards beta-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica. FEMS Yeast Res 2010 ; 10 : 917–927. [CrossRef] [PubMed] [Google Scholar]
  • Haddouche R, Poirier Y, Delessert S, et al. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ss-oxidation multifunctional protein. Appl Microbiol Biotechnol 2011 ; 91 : 1327–1340. [CrossRef] [PubMed] [Google Scholar]
  • Mlickova K, Roux E, Athenstaedt K, et al. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 2004 ; 70 : 3918–3924. [CrossRef] [PubMed] [Google Scholar]
  • Morin N, Cescut J, Beopoulos A, et al. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 2011 ; 6 : e27966; availlable on line. [CrossRef] [PubMed] [Google Scholar]
  • Picataggio S, Rohrer T, Deanda K, et al. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology (NY) 1992 ; 10 : 894–898. [CrossRef] [PubMed] [Google Scholar]
  • Poirier Y, Erard N, MacDonald-Comber Petetot J. Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris. FEMS Microbiol Lett 2002 ; 207 : 97–102. [CrossRef] [PubMed] [Google Scholar]
  • Poirier Y, Erard N, Petetot JM. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation. Appl Environ Microbiol 2001 ; 67 : 5254–5260. [CrossRef] [PubMed] [Google Scholar]
  • Ratledge C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 2002 ; 30 : 1047–1050. [CrossRef] [PubMed] [Google Scholar]
  • Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 2002 ; 51 : 1–51. [CrossRef] [PubMed] [Google Scholar]
  • Ratlege C, Tan K. Oils and fats: production, degradation and utilization by yeasts. Yeast biotechnology and biocatalysis 1990: 223–254. [Google Scholar]
  • Sabirova JS, Haddouche R, Van Bogaert IN, et al. The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microb Biotechnol 2011 ; 4 : 47–54. [CrossRef] [PubMed] [Google Scholar]
  • Schmidt-Dannert C. Engineering novel carotenoids in microorganisms. Curr Opin Biotechnol 2000 ; 11 : 255–261. [CrossRef] [PubMed] [Google Scholar]
  • Smit MS, Mokgoro MM, Setati E, et al. alpha, omega-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. Biotechnol Lett 2005 ; 27 : 859–864. [CrossRef] [PubMed] [Google Scholar]
  • Steen EJ, Kang Y, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010 ; 463 : 559–562. [CrossRef] [PubMed] [Google Scholar]
  • Thevenieau F. Metabolic engineering of the yeast Yarrowia lipolytica for the production of long-chain dicarboxylic acids from renewable oil feedstock. PhD thesis: Institut National Agronomique Paris-Grignon, 2006. [Google Scholar]
  • Thurmond W. Biodiesel 2020: A global market survey. E.M. Online. 2008. [Google Scholar]
  • Wang HJ, Le Dall MT, Wach Y, et al. Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica. J Bacteriol. 1999 ; 181 : 5140–5148. [PubMed] [Google Scholar]
  • Wynn JP, Ratledge C. Microbial Production of Oils and Fats. In: Shetty K, Paliyath G, Pometto A, Levin ER (Eds.), Food Biotechnology. CRC Press, 2005: 443–472. [Google Scholar]
  • Ykema A, Verbree EC, Van Verseveld HW, et al. Mathematical modelling of lipid production by oleaginous yeasts in continuous cultures. Antonie Van Leeuwenhoek 1986 ; 52 : 491–506. [CrossRef] [PubMed] [Google Scholar]
  • Zweytick D, Athenstaedt K, Daum G. Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 2000 ; 1469 : 101–120. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.