Open Access
Issue |
OCL
Volume 19, Number 1, Janvier-Février 2012
|
|
---|---|---|
Page(s) | 22 - 28 | |
Section | Dossier : Lipochimie | |
DOI | https://doi.org/10.1051/ocl.2012.0426 | |
Published online | 15 January 2012 |
- Athenstaedt K, Jolivet P, Boulard C, et al. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 2006 ; 6 : 1450–1459. [CrossRef] [PubMed] [Google Scholar]
- Bati N, Hammond E, Glatz B. Biomodification of fats and oils: trials with Candida lipolytica. J Am Oil Chem Soc 1984 ; 61 : 1743–1746. [CrossRef] [Google Scholar]
- Beopoulos A, Haddouche R, Kabran P, et al. Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol 2011: DOI 10.1007/s00253-011-3506-x. available on line. [Google Scholar]
- Beopoulos A, Mrozova Z, Thevenieau F, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 2008 ; 74 : 7779–7789. [CrossRef] [PubMed] [Google Scholar]
- Brown DA. Lipid droplets: proteins floating on a pool of fat. Curr Biol 2001 ; 11 : 446–449. [CrossRef] [Google Scholar]
- Cescut J. Accumulation d’acylglycérols par des espèces levuriennes à usage carburant aéronautique : physiologie et performances de procédés. PhD thesis: Toulouse, Université de Toulouse, 2009: 283 [Google Scholar]
- Chen X, Li Z, Zhang X, et al. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 2009 ; 159 : 591–604. [CrossRef] [PubMed] [Google Scholar]
- Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts. Nature 2004 ; 430 : 35–44. [CrossRef] [PubMed] [Google Scholar]
- Dulermo T, Nicaud JM. Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 2011 ; 13 : 482–491. [CrossRef] [PubMed] [Google Scholar]
- Eschenfeldt WH, Zhang Y, Samaha H, et al. Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida tropicalis. Appl Environ Microbiol 2003 ; 69 : 5992–5999. [CrossRef] [PubMed] [Google Scholar]
- Fickers P, Benetti PH, Wache Y, et al. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 2005 ; 5 : 527–543. [CrossRef] [PubMed] [Google Scholar]
- Fujimoto T, Ohsaki Y, Cheng J, et al. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 2008 ; 130 : 263–279. [CrossRef] [PubMed] [Google Scholar]
- Garcia Sanchez R, Karhumaa K, Fonseca C, et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 2010 ; 3 : 13. [CrossRef] [PubMed] [Google Scholar]
- Granger L. Caractérisation cinétique et stoechiometrique de la synthèse d’acide gras chez Rhodotorula glutinis. Toulouse, Institut National des sciences appliquées de Toulouse. PhD thesis, 1992: 247 [Google Scholar]
- Haddouche R, Delessert S, Sabirova J, et al. Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards beta-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica. FEMS Yeast Res 2010 ; 10 : 917–927. [CrossRef] [PubMed] [Google Scholar]
- Haddouche R, Poirier Y, Delessert S, et al. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ss-oxidation multifunctional protein. Appl Microbiol Biotechnol 2011 ; 91 : 1327–1340. [CrossRef] [PubMed] [Google Scholar]
- Mlickova K, Roux E, Athenstaedt K, et al. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 2004 ; 70 : 3918–3924. [CrossRef] [PubMed] [Google Scholar]
- Morin N, Cescut J, Beopoulos A, et al. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 2011 ; 6 : e27966; availlable on line. [CrossRef] [PubMed] [Google Scholar]
- Picataggio S, Rohrer T, Deanda K, et al. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology (NY) 1992 ; 10 : 894–898. [Google Scholar]
- Poirier Y, Erard N, MacDonald-Comber Petetot J. Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris. FEMS Microbiol Lett 2002 ; 207 : 97–102. [CrossRef] [PubMed] [Google Scholar]
- Poirier Y, Erard N, Petetot JM. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation. Appl Environ Microbiol 2001 ; 67 : 5254–5260. [CrossRef] [PubMed] [Google Scholar]
- Ratledge C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 2002 ; 30 : 1047–1050. [CrossRef] [PubMed] [Google Scholar]
- Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 2002 ; 51 : 1–51. [CrossRef] [PubMed] [Google Scholar]
- Ratlege C, Tan K. Oils and fats: production, degradation and utilization by yeasts. Yeast biotechnology and biocatalysis 1990: 223–254. [Google Scholar]
- Sabirova JS, Haddouche R, Van Bogaert IN, et al. The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microb Biotechnol 2011 ; 4 : 47–54. [CrossRef] [PubMed] [Google Scholar]
- Schmidt-Dannert C. Engineering novel carotenoids in microorganisms. Curr Opin Biotechnol 2000 ; 11 : 255–261. [CrossRef] [PubMed] [Google Scholar]
- Smit MS, Mokgoro MM, Setati E, et al. alpha, omega-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. Biotechnol Lett 2005 ; 27 : 859–864. [CrossRef] [PubMed] [Google Scholar]
- Steen EJ, Kang Y, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010 ; 463 : 559–562. [CrossRef] [PubMed] [Google Scholar]
- Thevenieau F. Metabolic engineering of the yeast Yarrowia lipolytica for the production of long-chain dicarboxylic acids from renewable oil feedstock. PhD thesis: Institut National Agronomique Paris-Grignon, 2006. [Google Scholar]
- Thurmond W. Biodiesel 2020: A global market survey. E.M. Online. 2008. [Google Scholar]
- Wang HJ, Le Dall MT, Wach Y, et al. Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica. J Bacteriol. 1999 ; 181 : 5140–5148. [PubMed] [Google Scholar]
- Wynn JP, Ratledge C. Microbial Production of Oils and Fats. In: Shetty K, Paliyath G, Pometto A, Levin ER (Eds.), Food Biotechnology. CRC Press, 2005: 443–472. [Google Scholar]
- Ykema A, Verbree EC, Van Verseveld HW, et al. Mathematical modelling of lipid production by oleaginous yeasts in continuous cultures. Antonie Van Leeuwenhoek 1986 ; 52 : 491–506. [CrossRef] [PubMed] [Google Scholar]
- Zweytick D, Athenstaedt K, Daum G. Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 2000 ; 1469 : 101–120. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.