Open Access
Volume 18, Numéro 5, Septembre-Octobre 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Deuxième partie)
Page(s) 284 - 290
Section PUFA and Ocular Pathologies
Publié en ligne 15 septembre 2011
  • Agbaga MP, Brush RS, et al. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A 2008; 105: 12843–12848. [CrossRef] [PubMed] [Google Scholar]
  • Agbaga MP, Mandal MN, et al. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res 2010; 51: 1624–1642. [CrossRef] [PubMed] [Google Scholar]
  • Aveldano MI. A novel group of very long chain polyenoic fatty acids in dipolyunstaurated phosphatidylcholines from vertebrate retina. J Biol Chem 1987; 262: 1172–1179. [CrossRef] [PubMed] [Google Scholar]
  • Aveldano MI. Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of phostoreceptor membranes. Biochemistry 1988; 27: 1229–1239. [CrossRef] [PubMed] [Google Scholar]
  • Aveldano MI, Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem 1987; 262: 1180–1186. [PubMed] [Google Scholar]
  • Berdeaux O, Juanéda P, et al. Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J Chromatogr A 2010; 1217: 7738–7748. [CrossRef] [PubMed] [Google Scholar]
  • Berdeaux O, Wolff R. Gas-liquid chromatography-mass spectrometry of the 4,4-dimethyloxazoline derivatives of D5-unsaturated polymethylene-interrupted fatty acids from conifer seed oils. J Am Oil Chem Soc 1996; 73: 1323–1326. [CrossRef] [Google Scholar]
  • Cameron DJ, Tong ZZ, et al. Essential role of Elovl4 in very long chain fatty acid synthesis, skin permeability barrier function, and neonatal survival. Int J Biol Sci 2007; 3: 111–119. [CrossRef] [PubMed] [Google Scholar]
  • Edwards AO, Donoso LA, et al. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Investig Ophthalmol Vis Sci 2001; 42: 52–2663. [Google Scholar]
  • Fay L, Richli U. Location of double bonds in polyunsaturatde fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 1991; 541: 89–98. [CrossRef] [Google Scholar]
  • Grayson C, Molday RS. Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J Biol Chem 2005; 280: 32521–32530. [CrossRef] [PubMed] [Google Scholar]
  • Hsu FF, Bohrer A, et al. Formation of lithiated adducts of glycerophosphocholine lipids facilitated their identification by electrospray ionization tandem mass spectrometry. J Am Soc Mass spectrom 1998; 9: 516–526. [CrossRef] [PubMed] [Google Scholar]
  • Karan G, Lillo C, et al. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci U S A 2005; 102: 4164–4169. [CrossRef] [PubMed] [Google Scholar]
  • Kerwin JL, Tuininga AR, et al. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res 1994; 35: 1102–1114. [PubMed] [Google Scholar]
  • Leonard AE, Pereira SL, et al. Elongation of long-chain fatty acids. Prog Lipid Res 2004; 43: 36–54. [CrossRef] [PubMed] [Google Scholar]
  • Li W, Chen Y, et al. Elovl4 haploinsufficiency does not induce early onset retinal degeneration in mice. Vision Res 2007; 47: 714–722. [CrossRef] [PubMed] [Google Scholar]
  • Li W, Sandhoff R, et al. Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice. Int J Biol Sci 2007; 3: 120–128. [CrossRef] [PubMed] [Google Scholar]
  • McMahon A, Jackson SN, et al. A Stargardt disease-3 mutation in the mouse Elovl4 gene causes retinal deficiency of C32–C36 acyl phosphatidylcholines. FEBS Letters 2007; 581: 5459–5463. [CrossRef] [PubMed] [Google Scholar]
  • McMahon A, Kedzierski W. Polyunsaturated very-long-chain C28–C36 fatty acids and retinal physiology. Br J Ophthalmol 2010; 94: 1127–1132. [CrossRef] [PubMed] [Google Scholar]
  • Meyer A, Kirsch H, et al. Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 2004; 45: 1899–1909. [CrossRef] [PubMed] [Google Scholar]
  • Poulos A. Very long chain fatty acids in higher animals–a review. Lipids 1995; 30: 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Raz-Prag D, Ayyagari R, et al. Haploinsufficiency is not the key mechanism of pathogenesis in a heterozygous Elovl4 knockout mouse model of STGD3 disease. Invest Ophthalmol Vis Sci 2006; 47: 3603–3611. [CrossRef] [PubMed] [Google Scholar]
  • Rotstein NP, Aveldano MI. Synthesis of very long chain (up to 36 carbon) tetra, penta and heaenoic fatty acids in retina. Biochem J 1988; 249: 191–200. [PubMed] [Google Scholar]
  • SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005; 24: 87–138. [CrossRef] [PubMed] [Google Scholar]
  • Suh M, Clandinin MT. 20:5n–3 but not 22:6n–3 is preferred substracte for synthesis of n-3 very-long-chain fatty acids (C24–C36) in retina. Curr Eye Res 2005; 30: 959–968. [CrossRef] [PubMed] [Google Scholar]
  • Suh M, Wierzbicki AA, et al. Dietary fat alters membrane composition in rod outer segments in normal and diabetic rats: impact on content of very-long-chain (C>24) polyenoic fatty acids. Biochim Biophys Acta 1994; 1214: 54–62. [CrossRef] [PubMed] [Google Scholar]
  • Tvrdik P, Westerberg R, et al. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol 2000; 149: 707–717. [CrossRef] [PubMed] [Google Scholar]
  • Umeda S, Ayyagari R, et al. Molecular cloning of ELOVL4 gene from cynomolgus monkey (Macaca fascicularis). Experimental animals/Japanese Association for Laboratory Animal Science 2003; 52: 129–135. [CrossRef] [Google Scholar]
  • Vasireddy V, Jablonski MM, et al. Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofuscin. Exp Eye Res 2009; 89: 905–912. [CrossRef] [PubMed] [Google Scholar]
  • Westerberg R, Tvrdik P, et al. Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J Biol Chem 2004; 279: 5621–5629. [CrossRef] [PubMed] [Google Scholar]
  • Zhang JY, Yu QT, et al. Chemical modification in mass spetrometry IV-2-alkenyl-4,4-dimethyloxazolines as derivatives for the double bond location of long-chain olefinic acids. Biomed Environ Mass Spectrom 1988; 15: 33–44. [CrossRef] [Google Scholar]
  • Zhang ZQ, Wang Y, et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 2001; 29: 25–33. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.