Open Access
Numéro
OCL
Volume 18, Numéro 5, Septembre-Octobre 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Deuxième partie)
Page(s) 279 - 283
Section PUFA and Ocular Pathologies
DOI https://doi.org/10.1051/ocl.2011.0407
Publié en ligne 15 septembre 2011
  • Acar N, Berdeaux O, Juaneda P, et al. Red blood cell plasmalogens and docosahexaenoic acid are independently reduced in primary open-angle glaucoma. Exp Eye Res 2009; 89: 840–853. [CrossRef] [PubMed] [Google Scholar]
  • Agbaga MP, Brush RS, Mandal MNA, Henry K, Elliott MH, Anderson RE. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A 2008; 105: 12843–12848. [CrossRef] [PubMed] [Google Scholar]
  • Age-Related Eye Disease Study Research Group The Relationship of Dietary Lipid Intake and Age-Related Macular Degeneration in a Case-Control Study: AREDS Report No. 20. Arch Ophthalmol 2007; 125: 671–679. [CrossRef] [PubMed] [Google Scholar]
  • Bazan N. Inherited retinal degeneration. In: LaVail M, Anderson R, Hollyfield J (Eds.), Inherited and environmentally induced retinal degenerations. New York: Elsevier, 1989. [Google Scholar]
  • Bazan NG, Calandria JM, Serhan CN. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J Lipid Res 2010; 51: 2018–2031. [CrossRef] [PubMed] [Google Scholar]
  • Berdeaux O, Juaneda P, Martine L, Cabaret S, Bretillon L, Acar N. Identification and quantification of phosphatidylcholines containing very long chain polyunsaturated fatty acid (VLC-PUFA) in bovine and human retina by liquid chromatography/tandem mass spectrometry. J Chromatogr A 2010; 1217: 7738–7748. [CrossRef] [PubMed] [Google Scholar]
  • Bretillon L, Acar N, Seeliger MW, et al. ApoB100, LDLR-/- mice exhibit reduced electroretinographic response and cholesteryl esters deposits in the retina. Invest Ophthalmol Vis Sci 2008; 49: 1307–1314. [CrossRef] [PubMed] [Google Scholar]
  • Bretillon L, Thuret G, Grégoire S, et al. Lipid and fatty acid profile of the retina, retinal pigment epithelium/choroid, and lacrimal gland, and associations with adipose tissue fatty acids in human subjects. Exp Eye Res 2008; 87: 521–528. [CrossRef] [PubMed] [Google Scholar]
  • Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. Biochim Biophys Acta 2010; 1798: 177–193. [CrossRef] [PubMed] [Google Scholar]
  • Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, Age-related Macular Degeneration, and the Response-to-Retention of Apolipoprotein B-Containing Lipoproteins. Progr Retin Eye Res 2009; 28: 393–422. [Google Scholar]
  • Fliesler SJ, Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 1983; 22: 79–131. [CrossRef] [PubMed] [Google Scholar]
  • Fliesler SJ, Bretillon L. The ins and outs of cholesterol in the vertebrate retina. J Lipid Res 2010; 51: 3399–3413. [CrossRef] [PubMed] [Google Scholar]
  • Grossfield A, Feller SE, Pitman MC. A role for direct interactions in the modulation of rhodopsin by {omega}-3 polyunsaturated lipids. Proc Natl Acad Sci USA 2006: 4888–4893. [Google Scholar]
  • Kang JH, Pasquale LR, Willett WC, et al. Dietary fat consumption and primary open-angle glaucoma. Am J Clin Nutr 2004; 79: 755–764. [PubMed] [Google Scholar]
  • Karan G, Lillo C, Yang Z, et al. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci U S A 2005; 102: 4164–4169. [CrossRef] [PubMed] [Google Scholar]
  • Litman BJ. Mitchell D.C. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 1996; 31: Suppl. 31S193–S197. [CrossRef] [Google Scholar]
  • Masland RH. The fundamental plan of the retina. Nat Neurosci 2001; 4: 877–886. [CrossRef] [PubMed] [Google Scholar]
  • Neuringer M, Connor WE, Lin DS, Barstad L, Luck S. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci U S A 1986; 83: 4021–4025. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen CT, Vingrys AJ, Bui BV. Dietary omega-3 fatty acids and ganglion cell function. Invest Ophthalmol Vis Sci 2008; 49: 3586–3594. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen CTO, Bui BV, Sinclair AJ, Vingrys AJ. Dietary Omega 3 Fatty Acids Decrease Intraocular Pressure with Age by Increasing Aqueous Outflow. Invest Ophthalmol Vis Sci 2007; 48: 756–762. [CrossRef] [PubMed] [Google Scholar]
  • Quigley HA. Glaucoma: macrocosm to microcosm the friedenwald lecture. Invest Ophthalmol Vis Sci 2005; 46: 2663–2670. [CrossRef] [Google Scholar]
  • Quigley HA. Glaucoma. The Lancet 2011; 377: 1367–1377. [CrossRef] [Google Scholar]
  • Sangiovanni JP, Agron E, Meleth AD, et al. {omega}-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: AREDS report 30, a prospective cohort study from the Age-Related Eye Disease Study. Am J Clin Nutr 2009; 90: 1601–1607. [CrossRef] [PubMed] [Google Scholar]
  • Schnebelen C, Fourgeux C, Pasquis B, et al. Dietary polyunsaturated fatty acids reduce retinal stress induced by an elevation of intraocular pressure in rats. Nutrition Research 2011; 31: 286–295. [CrossRef] [Google Scholar]
  • Schnebelen C, Grégoire S, Pasquis P, et al. Dietary n-3 and n-6 PUFA enhances DHA incorporation in retinal phospholipids without affecting PGE1 and PGE2 levels. lipids 2009; 44: 465–470. [CrossRef] [PubMed] [Google Scholar]
  • Schnebelen C, Pasquis B, Salinas-Navarro M, et al. A dietary combination of omega-3 and omega-6 polyunsaturated fatty acids is more efficient than single supplementations in the prevention of retinal damage induced by elevation of intraocular pressure in rats. Graefes Arch Clin Exp Ophthalmol 2009; 247: 1191–1203. [CrossRef] [PubMed] [Google Scholar]
  • Schnebelen C, Viau S, Grégoire S, et al. Nutrition for the eye: different susceptibility of the retina and the lacrimal gland to dietary omega-6 and omega-3 polyunsaturated fatty acid incorporation. Ophthalmic Res 2009; 41: 216–224. [CrossRef] [PubMed] [Google Scholar]
  • Seddon JM, George S, Rosner B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol 2006; 124: 995–1001. [CrossRef] [PubMed] [Google Scholar]
  • Simon E, Bardet B, Gregoire S, et al. Decreasing dietary linoleic acid promotes long chain omega-3 fatty acid incorporation into rat retina and modifies gene expression. Exp Eye Res 2011;. doi: 10.1016/j.exer.2011.07.016. [Google Scholar]
  • Tan JSL, Wang JJ, Flood V, Mitchell P. Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the blue mountains eye study. Arch Ophthalmol 2009; 127: 656–665. [CrossRef] [PubMed] [Google Scholar]
  • Tserentsoodol N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol Vis 2006; 12: 1319–1333. [PubMed] [Google Scholar]
  • Tserentsoodol N, Sztein J, Campos M, et al. Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol Vis 2006; 12: 1306–1318. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.