Open Access
Volume 18, Number 5, Septembre-Octobre 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Deuxième partie)
Page(s) 284 - 290
Section PUFA and Ocular Pathologies
Published online 15 September 2011
  • Agbaga MP, Brush RS, et al. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A 2008; 105: 12843–12848. [CrossRef] [PubMed] [Google Scholar]
  • Agbaga MP, Mandal MN, et al. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res 2010; 51: 1624–1642. [CrossRef] [PubMed] [Google Scholar]
  • Aveldano MI. A novel group of very long chain polyenoic fatty acids in dipolyunstaurated phosphatidylcholines from vertebrate retina. J Biol Chem 1987; 262: 1172–1179. [CrossRef] [PubMed] [Google Scholar]
  • Aveldano MI. Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of phostoreceptor membranes. Biochemistry 1988; 27: 1229–1239. [CrossRef] [PubMed] [Google Scholar]
  • Aveldano MI, Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem 1987; 262: 1180–1186. [PubMed] [Google Scholar]
  • Berdeaux O, Juanéda P, et al. Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J Chromatogr A 2010; 1217: 7738–7748. [CrossRef] [PubMed] [Google Scholar]
  • Berdeaux O, Wolff R. Gas-liquid chromatography-mass spectrometry of the 4,4-dimethyloxazoline derivatives of D5-unsaturated polymethylene-interrupted fatty acids from conifer seed oils. J Am Oil Chem Soc 1996; 73: 1323–1326. [CrossRef] [Google Scholar]
  • Cameron DJ, Tong ZZ, et al. Essential role of Elovl4 in very long chain fatty acid synthesis, skin permeability barrier function, and neonatal survival. Int J Biol Sci 2007; 3: 111–119. [CrossRef] [PubMed] [Google Scholar]
  • Edwards AO, Donoso LA, et al. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Investig Ophthalmol Vis Sci 2001; 42: 52–2663. [Google Scholar]
  • Fay L, Richli U. Location of double bonds in polyunsaturatde fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 1991; 541: 89–98. [CrossRef] [Google Scholar]
  • Grayson C, Molday RS. Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J Biol Chem 2005; 280: 32521–32530. [CrossRef] [PubMed] [Google Scholar]
  • Hsu FF, Bohrer A, et al. Formation of lithiated adducts of glycerophosphocholine lipids facilitated their identification by electrospray ionization tandem mass spectrometry. J Am Soc Mass spectrom 1998; 9: 516–526. [CrossRef] [PubMed] [Google Scholar]
  • Karan G, Lillo C, et al. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci U S A 2005; 102: 4164–4169. [CrossRef] [PubMed] [Google Scholar]
  • Kerwin JL, Tuininga AR, et al. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res 1994; 35: 1102–1114. [PubMed] [Google Scholar]
  • Leonard AE, Pereira SL, et al. Elongation of long-chain fatty acids. Prog Lipid Res 2004; 43: 36–54. [CrossRef] [PubMed] [Google Scholar]
  • Li W, Chen Y, et al. Elovl4 haploinsufficiency does not induce early onset retinal degeneration in mice. Vision Res 2007; 47: 714–722. [CrossRef] [PubMed] [Google Scholar]
  • Li W, Sandhoff R, et al. Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice. Int J Biol Sci 2007; 3: 120–128. [CrossRef] [PubMed] [Google Scholar]
  • McMahon A, Jackson SN, et al. A Stargardt disease-3 mutation in the mouse Elovl4 gene causes retinal deficiency of C32–C36 acyl phosphatidylcholines. FEBS Letters 2007; 581: 5459–5463. [CrossRef] [PubMed] [Google Scholar]
  • McMahon A, Kedzierski W. Polyunsaturated very-long-chain C28–C36 fatty acids and retinal physiology. Br J Ophthalmol 2010; 94: 1127–1132. [CrossRef] [PubMed] [Google Scholar]
  • Meyer A, Kirsch H, et al. Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 2004; 45: 1899–1909. [CrossRef] [PubMed] [Google Scholar]
  • Poulos A. Very long chain fatty acids in higher animals–a review. Lipids 1995; 30: 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Raz-Prag D, Ayyagari R, et al. Haploinsufficiency is not the key mechanism of pathogenesis in a heterozygous Elovl4 knockout mouse model of STGD3 disease. Invest Ophthalmol Vis Sci 2006; 47: 3603–3611. [CrossRef] [PubMed] [Google Scholar]
  • Rotstein NP, Aveldano MI. Synthesis of very long chain (up to 36 carbon) tetra, penta and heaenoic fatty acids in retina. Biochem J 1988; 249: 191–200. [PubMed] [Google Scholar]
  • SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005; 24: 87–138. [CrossRef] [PubMed] [Google Scholar]
  • Suh M, Clandinin MT. 20:5n–3 but not 22:6n–3 is preferred substracte for synthesis of n-3 very-long-chain fatty acids (C24–C36) in retina. Curr Eye Res 2005; 30: 959–968. [CrossRef] [PubMed] [Google Scholar]
  • Suh M, Wierzbicki AA, et al. Dietary fat alters membrane composition in rod outer segments in normal and diabetic rats: impact on content of very-long-chain (C>24) polyenoic fatty acids. Biochim Biophys Acta 1994; 1214: 54–62. [CrossRef] [PubMed] [Google Scholar]
  • Tvrdik P, Westerberg R, et al. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol 2000; 149: 707–717. [CrossRef] [PubMed] [Google Scholar]
  • Umeda S, Ayyagari R, et al. Molecular cloning of ELOVL4 gene from cynomolgus monkey (Macaca fascicularis). Experimental animals/Japanese Association for Laboratory Animal Science 2003; 52: 129–135. [CrossRef] [Google Scholar]
  • Vasireddy V, Jablonski MM, et al. Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofuscin. Exp Eye Res 2009; 89: 905–912. [CrossRef] [PubMed] [Google Scholar]
  • Westerberg R, Tvrdik P, et al. Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J Biol Chem 2004; 279: 5621–5629. [CrossRef] [PubMed] [Google Scholar]
  • Zhang JY, Yu QT, et al. Chemical modification in mass spetrometry IV-2-alkenyl-4,4-dimethyloxazolines as derivatives for the double bond location of long-chain olefinic acids. Biomed Environ Mass Spectrom 1988; 15: 33–44. [CrossRef] [Google Scholar]
  • Zhang ZQ, Wang Y, et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 2001; 29: 25–33. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.