Open Access
Issue
OCL
Volume 18, Number 5, Septembre-Octobre 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Deuxième partie)
Page(s) 279 - 283
Section PUFA and Ocular Pathologies
DOI https://doi.org/10.1051/ocl.2011.0407
Published online 15 September 2011
  • Acar N, Berdeaux O, Juaneda P, et al. Red blood cell plasmalogens and docosahexaenoic acid are independently reduced in primary open-angle glaucoma. Exp Eye Res 2009; 89: 840–853. [CrossRef] [PubMed] [Google Scholar]
  • Agbaga MP, Brush RS, Mandal MNA, Henry K, Elliott MH, Anderson RE. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A 2008; 105: 12843–12848. [CrossRef] [PubMed] [Google Scholar]
  • Age-Related Eye Disease Study Research Group The Relationship of Dietary Lipid Intake and Age-Related Macular Degeneration in a Case-Control Study: AREDS Report No. 20. Arch Ophthalmol 2007; 125: 671–679. [CrossRef] [PubMed] [Google Scholar]
  • Bazan N. Inherited retinal degeneration. In: LaVail M, Anderson R, Hollyfield J (Eds.), Inherited and environmentally induced retinal degenerations. New York: Elsevier, 1989. [Google Scholar]
  • Bazan NG, Calandria JM, Serhan CN. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J Lipid Res 2010; 51: 2018–2031. [CrossRef] [PubMed] [Google Scholar]
  • Berdeaux O, Juaneda P, Martine L, Cabaret S, Bretillon L, Acar N. Identification and quantification of phosphatidylcholines containing very long chain polyunsaturated fatty acid (VLC-PUFA) in bovine and human retina by liquid chromatography/tandem mass spectrometry. J Chromatogr A 2010; 1217: 7738–7748. [CrossRef] [PubMed] [Google Scholar]
  • Bretillon L, Acar N, Seeliger MW, et al. ApoB100, LDLR-/- mice exhibit reduced electroretinographic response and cholesteryl esters deposits in the retina. Invest Ophthalmol Vis Sci 2008; 49: 1307–1314. [CrossRef] [PubMed] [Google Scholar]
  • Bretillon L, Thuret G, Grégoire S, et al. Lipid and fatty acid profile of the retina, retinal pigment epithelium/choroid, and lacrimal gland, and associations with adipose tissue fatty acids in human subjects. Exp Eye Res 2008; 87: 521–528. [CrossRef] [PubMed] [Google Scholar]
  • Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. Biochim Biophys Acta 2010; 1798: 177–193. [CrossRef] [PubMed] [Google Scholar]
  • Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, Age-related Macular Degeneration, and the Response-to-Retention of Apolipoprotein B-Containing Lipoproteins. Progr Retin Eye Res 2009; 28: 393–422. [CrossRef] [PubMed] [Google Scholar]
  • Fliesler SJ, Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 1983; 22: 79–131. [CrossRef] [PubMed] [Google Scholar]
  • Fliesler SJ, Bretillon L. The ins and outs of cholesterol in the vertebrate retina. J Lipid Res 2010; 51: 3399–3413. [CrossRef] [PubMed] [Google Scholar]
  • Grossfield A, Feller SE, Pitman MC. A role for direct interactions in the modulation of rhodopsin by {omega}-3 polyunsaturated lipids. Proc Natl Acad Sci USA 2006: 4888–4893. [CrossRef] [Google Scholar]
  • Kang JH, Pasquale LR, Willett WC, et al. Dietary fat consumption and primary open-angle glaucoma. Am J Clin Nutr 2004; 79: 755–764. [PubMed] [Google Scholar]
  • Karan G, Lillo C, Yang Z, et al. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci U S A 2005; 102: 4164–4169. [CrossRef] [PubMed] [Google Scholar]
  • Litman BJ. Mitchell D.C. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 1996; 31: Suppl. 31S193–S197. [CrossRef] [Google Scholar]
  • Masland RH. The fundamental plan of the retina. Nat Neurosci 2001; 4: 877–886. [CrossRef] [PubMed] [Google Scholar]
  • Neuringer M, Connor WE, Lin DS, Barstad L, Luck S. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci U S A 1986; 83: 4021–4025. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen CT, Vingrys AJ, Bui BV. Dietary omega-3 fatty acids and ganglion cell function. Invest Ophthalmol Vis Sci 2008; 49: 3586–3594. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen CTO, Bui BV, Sinclair AJ, Vingrys AJ. Dietary Omega 3 Fatty Acids Decrease Intraocular Pressure with Age by Increasing Aqueous Outflow. Invest Ophthalmol Vis Sci 2007; 48: 756–762. [CrossRef] [PubMed] [Google Scholar]
  • Quigley HA. Glaucoma: macrocosm to microcosm the friedenwald lecture. Invest Ophthalmol Vis Sci 2005; 46: 2663–2670. [CrossRef] [Google Scholar]
  • Quigley HA. Glaucoma. The Lancet 2011; 377: 1367–1377. [CrossRef] [Google Scholar]
  • Sangiovanni JP, Agron E, Meleth AD, et al. {omega}-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: AREDS report 30, a prospective cohort study from the Age-Related Eye Disease Study. Am J Clin Nutr 2009; 90: 1601–1607. [CrossRef] [PubMed] [Google Scholar]
  • Schnebelen C, Fourgeux C, Pasquis B, et al. Dietary polyunsaturated fatty acids reduce retinal stress induced by an elevation of intraocular pressure in rats. Nutrition Research 2011; 31: 286–295. [CrossRef] [Google Scholar]
  • Schnebelen C, Grégoire S, Pasquis P, et al. Dietary n-3 and n-6 PUFA enhances DHA incorporation in retinal phospholipids without affecting PGE1 and PGE2 levels. lipids 2009; 44: 465–470. [CrossRef] [PubMed] [Google Scholar]
  • Schnebelen C, Pasquis B, Salinas-Navarro M, et al. A dietary combination of omega-3 and omega-6 polyunsaturated fatty acids is more efficient than single supplementations in the prevention of retinal damage induced by elevation of intraocular pressure in rats. Graefes Arch Clin Exp Ophthalmol 2009; 247: 1191–1203. [CrossRef] [PubMed] [Google Scholar]
  • Schnebelen C, Viau S, Grégoire S, et al. Nutrition for the eye: different susceptibility of the retina and the lacrimal gland to dietary omega-6 and omega-3 polyunsaturated fatty acid incorporation. Ophthalmic Res 2009; 41: 216–224. [CrossRef] [PubMed] [Google Scholar]
  • Seddon JM, George S, Rosner B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol 2006; 124: 995–1001. [CrossRef] [PubMed] [Google Scholar]
  • Simon E, Bardet B, Gregoire S, et al. Decreasing dietary linoleic acid promotes long chain omega-3 fatty acid incorporation into rat retina and modifies gene expression. Exp Eye Res 2011;. doi: 10.1016/j.exer.2011.07.016. [Google Scholar]
  • Tan JSL, Wang JJ, Flood V, Mitchell P. Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the blue mountains eye study. Arch Ophthalmol 2009; 127: 656–665. [CrossRef] [PubMed] [Google Scholar]
  • Tserentsoodol N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol Vis 2006; 12: 1319–1333. [PubMed] [Google Scholar]
  • Tserentsoodol N, Sztein J, Campos M, et al. Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol Vis 2006; 12: 1306–1318. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.