Open Access
Numéro
OCL
Volume 18, Numéro 1, Janvier-Février 2011
Dossier : Lipides et inflammation
Page(s) 34 - 38
Section Nutrition – Santé
DOI https://doi.org/10.1051/ocl.2011.0362
Publié en ligne 15 janvier 2011
  • Argiles JM, Anker SD, Evans WJ, et al. Consensus on cachexia definitions. J Am Med Dir Assoc 2010 ; 11 : 229–230. [CrossRef] [PubMed] [Google Scholar]
  • Baracos VE. Regulation of skeletal-muscle-protein turnover in cancer-associated cachexia. Nutrition 2000 ; 16 : 1015–1018. [CrossRef] [PubMed] [Google Scholar]
  • Bougnoux P, Hajjaji N, Ferrasson MN, Giraudeau B, Couet C, Le Floch O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial. Br J Cancer 2009 ; 101 : 1978–1985. [CrossRef] [PubMed] [Google Scholar]
  • Busquets S, Aranda X, Ribas-Carbo M, Azcon-Bieto J, Lopez-Soriano FJ, Argiles JM. Tumour necrosis factor-alpha uncouples respiration in isolated rat mitochondria. Cytokine 2003 ; 22 : 1–4. [CrossRef] [PubMed] [Google Scholar]
  • Calder PC. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 2009 ; 91 : 791–795. [CrossRef] [PubMed] [Google Scholar]
  • Colomer R, Moreno-Nogueira JM, Garcia-Luna PP, et al. N-3 fatty acids, cancer and cachexia: a systematic review of the literature. Br J Nutr 2007 ; 97 : 823–831. [CrossRef] [PubMed] [Google Scholar]
  • Costelli P, Bossola M, Muscaritoli M, et al. Anticytokine treatment prevents the increase in the activity of ATP-ubiquitin- and Ca(2+)-dependent proteolytic systems in the muscle of tumour-bearing rats. cytokine 2002 ; 19 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  • Costelli P, Muscaritoli M, Bonetto A, et al. Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Invest 2008 ; 38 : 531–538. [CrossRef] [PubMed] [Google Scholar]
  • Dewey A, Dean T, Higgins B, Johnson I. Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst Rev 2007 : CD004597. [Google Scholar]
  • Dewys WD, Begg C, Lavin PT, et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 1980 ; 69 : 491–497. [CrossRef] [PubMed] [Google Scholar]
  • Dumas JF, Goupille C, Julienne CM, et al. Efficiency of oxidative phosphorylation in liver mitochondria is decreased in a rat model of peritoneal carcinosis. J Hepatol 2011 ; 54 : 320–327. [CrossRef] [PubMed] [Google Scholar]
  • Dumas JF, Goupille C, Pinault M, et al. n-3 PUFA-enriched diet delays the occurrence of cancer cachexia in rat with peritoneal carcinosis. Nutr Cancer 2010 ; 62 : 343–350. [CrossRef] [PubMed] [Google Scholar]
  • Hellerstein MK, Meydani SN, Meydani M, Wu K, Dinarello CA. Interleukin-1-induced anorexia in the rat. Influence of prostaglandins. J Clin Invest 1989 ; 84 : 228–235. [CrossRef] [PubMed] [Google Scholar]
  • Jho DH, Babcock TA, Tevar R, Helton WS, Espat NJ. Eicosapentaenoic acid supplementation reduces tumor volume and attenuates cachexia in a rat model of progressive non-metastasizing malignancy. JPEN J Parenter Enteral Nutr 2002 ; 26 : 291–297. [CrossRef] [PubMed] [Google Scholar]
  • Lai V, George J, Richey L, et al. Results of a pilot study of the effects of celecoxib on cancer cachexia in patients with cancer of the head, neck, and gastrointestinal tract. Head Neck 2008 ; 30 : 67–74. [CrossRef] [PubMed] [Google Scholar]
  • Langstein HN, Doherty GM, Fraker DL, Buresh CM, Norton JA. The roles of gamma-interferon and tumor necrosis factor alpha in an experimental rat model of cancer cachexia. Cancer Res 1991 ; 51 : 2302–2306. [PubMed] [Google Scholar]
  • Llovera M, Carbo N, Lopez-Soriano J, et al. Different cytokines modulate ubiquitin gene expression in rat skeletal muscle. Cancer Lett 1998 ; 133 : 83–87. [CrossRef] [PubMed] [Google Scholar]
  • Lopez-Soriano J, Llovera M, Carbo N, Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM. Lipid metabolism in tumour-bearing mice: studies with knockout mice for tumour necrosis factor receptor 1 protein. Mol Cell Endocrinol 1997 ; 132 : 93–99. [CrossRef] [PubMed] [Google Scholar]
  • Lundholm K, Gelin J, Hyltander A, et al. Anti-inflammatory treatment may prolong survival in undernourished patients with metastatic solid tumors. Cancer Res 1994 ; 54 : 5602–5606. [PubMed] [Google Scholar]
  • Lundholm K, Daneryd P, Korner U, Hyltander A, Bosaeus I. Evidence that long-term COX-treatment improves energy homeostasis and body composition in cancer patients with progressive cachexia. Int J Oncol 2004 ; 24 : 505–512. [PubMed] [Google Scholar]
  • Mantovani G, Maccio A, Madeddu C, et al. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med 2010 ; 88 : 85–92. [CrossRef] [PubMed] [Google Scholar]
  • Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 2006 ; 83 : 735–743. [CrossRef] [PubMed] [Google Scholar]
  • Muscaritoli M, Anker SD, Argiles J. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010 ; 29 : 154–159. [CrossRef] [PubMed] [Google Scholar]
  • Ng EH, Lowry SF. Nutritional support and cancer cachexia. Evolving concepts of mechanisms and adjunctive therapies. Hematol Oncol Clin North Am 1991 ; 5 : 161–184. [PubMed] [Google Scholar]
  • Perumal SS, Shanthi P, Sachdanandam P. Energy-modulating vitamins – a new combinatorial therapy prevents cancer cachexia in rat mammary carcinoma. Br J Nutr 2005 ; 93 : 901–909. [CrossRef] [PubMed] [Google Scholar]
  • Pfitzenmaier J, Vessella R, Higano CS, Noteboom JL, Wallace D Jr., Corey E. Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 2003 ; 97 : 1211–1216. [CrossRef] [PubMed] [Google Scholar]
  • Ramos EJ, Middleton FA, Laviano A, et al. Effects of omega-3 fatty acid supplementation on tumor-bearing rats. J Am Coll Surg 2004 ; 199 : 716–723. [CrossRef] [PubMed] [Google Scholar]
  • Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997 ; 77 : 731–758. [PubMed] [Google Scholar]
  • Samavati L, Lee I, Mathes I, Lottspeich F, Huttemann M. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 2008 ; 283 : 21134–21144. [CrossRef] [PubMed] [Google Scholar]
  • Scott HR, McMillan DC, Forrest LM, Brown DJ, McArdle CS, Milroy R. The systemic inflammatory response, weight loss, performance status and survival in patients with inoperable non-small cell lung cancer. Br J Cancer 2002 ; 87 : 264–267. [CrossRef] [PubMed] [Google Scholar]
  • Soda K, Kawakami M, Kashii A, Miyata M. Characterization of mice bearing subclones of colon 26 adenocarcinoma disqualifies interleukin-6 as the sole inducer of cachexia. Jpn J Cancer Res 1994 ; 85 : 1124–1130. [CrossRef] [PubMed] [Google Scholar]
  • Strassmann G, Fong M, Kenney JS, Jacob CO. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 1992 ; 89 : 1681–1684. [CrossRef] [PubMed] [Google Scholar]
  • Tatsumi T, Matoba S, Kawahara A, et al. Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol 2000 ; 35 : 1338–1346. [CrossRef] [PubMed] [Google Scholar]
  • Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009 ; 89 : 381–410. [CrossRef] [PubMed] [Google Scholar]
  • Togni V, Ota CC, Folador A, et al. Cancer cachexia and tumor growth reduction in Walker 256 tumor-bearing rats supplemented with N-3 polyunsaturated fatty acids for one generation. Nutr Cancer 2003 ; 46 : 52–58. [CrossRef] [PubMed] [Google Scholar]
  • Whitehouse AS, Smith HJ, Drake JL, Tisdale MJ. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res 2001 ; 61 : 3604–3609. [PubMed] [Google Scholar]
  • Wigmore SJ, Ross JA, Falconer JS, et al. The effect of polyunsaturated fatty acids on the progress of cachexia in patients with pancreatic cancer. Nutrition 1996 ; 12 : S27–S30. [PubMed] [Google Scholar]
  • Wigmore SJ, Fearon KC, Maingay JP, Ross JA. Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sci (Lond) 1997 ; 92 : 215–221. [PubMed] [Google Scholar]
  • Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 2002 ; 51 : 2929–2935. [CrossRef] [PubMed] [Google Scholar]
  • Zhou X, Wang JL, Lu J, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010 ; 142 : 531–543. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.