Open Access
Numéro
OCL
Volume 31, 2024
Numéro d'article 17
Nombre de pages 9
Section Agronomy
DOI https://doi.org/10.1051/ocl/2024015
Publié en ligne 27 août 2024
  • Bahmankar M, Nabati DA, Dehdari M. 2014. Correlation, multiple regression and path analysis for some yield-related traits in safflower. J Biodiv Environ Sci 4: 111–118. [Google Scholar]
  • Bahmankar M, Nabati DA, Dehdari M. 2017. Genetic relationships among Iranian and exotic safflower using microsatellite markers. J Crop Sci Biotech 20: 159–165. [CrossRef] [Google Scholar]
  • Bakhshi B, Oghan HA, Rameeh V, Fanaei HR, Askari A, Faraji A, Afrouzi MAAN. 2023. Analysis of genotype by environment interaction to identify high-yielding and stable oilseed rape genotypes using the GGE-biplot model. Ecol Genet Genom 28: 100187. [Google Scholar]
  • Beyyavas V, Dogan L. 2022. Yield, yield components and oil ratios of irrigated and rainfed safflower cultivars (Carthamus tinctorius L.) under semi-arid climate conditions. Appl Ecol Environ Res 20: 1807–1820. [CrossRef] [Google Scholar]
  • Dajue L, Mündel HH. 1996. Safflower, Carthamus tinctorius L. Vol. 7. Bioversity International. [Google Scholar]
  • Dwivedi SL, Upadhyaya HD, Hegde DM. 2005. Development of core collection using geographic information and morphological descriptors in safflower (Carthamus tinctorius L.) germplasm. Genet Resour Crop Evol 52: 821–830. [CrossRef] [Google Scholar]
  • Ebrahimi H, Sabaghnia N, Javanmard A, Abbasi A. 2023. Genotype by trait biplot analysis of trait relations in safflower. Agrotech Ind Crops 3: 67–73. [Google Scholar]
  • FAOSTAT. 2022. Food and Agricultural Organization of the United Nations. http://faostat.fao.org [last accessed 04.08.2024]. [Google Scholar]
  • Fattahi M, Janmohammadi M, Dashti S, Nouraein M, Sabaghnia N. 2018. Effects of nitrogen and micronutrients on the growth of safflower under limited water conditions in a high-elevation region. Biologija 64: 235–248 [CrossRef] [Google Scholar]
  • Gholami M, Sabaghnia N, Nouraein M, Shekari F, Janmohammadi M. 2018. Cluster analysis of some safflower genotypes using a number of agronomic characteristics. J Crop Breed 10: 159–166. [CrossRef] [Google Scholar]
  • Jabbari H, Fanaei HR, Shariati F, Sadeghi-Garmarodi H, Abasali M, Omidi AH. 2022. Principal components analysis of some Iranian and foreign safflower genotypes using morphological and agronomic traits. J Crops Improv 24: 125–143. [Google Scholar]
  • Kemal A, Hailu F. 2019. Genetic diversity of Safflower (Carthamus tinctorius L.) genotypes at Wollo, Ethiopia using agro-morphological traits. Trop Plant Res 6: 157–165. [Google Scholar]
  • Kammili A, Yadav P. 2022. Enhancing oleic acid and oil content in low oil and oleic type Indian safflower (Carthamus tinctorius L.). Ind Crops Products 175: 114254. [CrossRef] [Google Scholar]
  • Kizil S, Çakmak Ö, Kirici SALİHA, İnan M. 2008. A comprehensive study on safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnol Biotechnol Equip 22: 947–953. [CrossRef] [Google Scholar]
  • Kumar K, Anjoy P, Sahu S, Durgesh K, Das A, Tribhuvan KU, Gaikwad K. 2022. Single trait versus principal component-based association analysis for flowering related traits in pigeonpea. Sci Rep 12: 10453. [CrossRef] [PubMed] [Google Scholar]
  • Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN. 2008. Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res 107: 221–231. [CrossRef] [Google Scholar]
  • Lira JPE, Barelli MAA, da Silva VP, Felipin-Azevedo R, dos Santos DT, Galbiati C, Poletine JP. 2021. Safflower genetic diversity based on agronomic characteristics in Mato Grosso state, Brazil, for a crop improvement program. Conserv Gene 20: 1–12. [CrossRef] [Google Scholar]
  • Minitab Institute. 2005. Minitab user’s guide, verso 14. Harrisburg, Pennsylvania: Minitab Institute. [Google Scholar]
  • Minnie CM, Pushpavalli S, Sujatha K, Sandeep S, Sudhakar C, Rajeshwar REDDY, Rani CS. 2020. Genetic analysis for yield and its attributes in safflower (Carthamus tinctori L.). J Oilseeds Res 37: 253–259. [Google Scholar]
  • Omidi-Tabrizi AH, Gannadha MR, Peygambari SA. 1999. Study of important agronomic traits in spring cultivars of safflower by multivariate statistical methods. Iran Agric Sci J 30: 817–826. [Google Scholar]
  • Pascual-Villalobos MJ, Alburquerque N. 1995. Genetic variation of a safflower germplasm collection grown as a winter crop in southern Spain. Euphytica 92: 327–332. [CrossRef] [Google Scholar]
  • Pourdad SS, Singh JB. 2002. Evaluation of germplasm collection of safflower (Carthamus tinctorius and C. oxycantha) in dryland conditions of Iran. Indian J Genet Plant Breed 62: 87–88. [Google Scholar]
  • Rudolphi S, Becker HC, von Witzke-Ehbrecht S. 2008. Outcrossing rate of safflower (Carthamus tinctorius L.) genotypes under the agro climatic conditions of Northern Germany. 7th International Safflower Conference, Safflower: Unexploited Potential and World Adaptability, Wagga Wagga, NSW, Australia, 3–6 November 2008. [Google Scholar]
  • Sabaghnia N, Mohebodini M, Janmohammadi M. 2016. Biplot analysis of trait relations of spinach (Spinacia oleracea L.) landraces. Genetika 48: 675–690. [CrossRef] [Google Scholar]
  • Safavi SM, Pourdad SS, Safavi SA. 2013. Evaluation of drought tolerance in safflower (Carthamus tinctorius L.) under non stress and drought stress conditions. Int J Adv Biol Biomed Res 1: 1086–1093. [Google Scholar]
  • Shinwari ZK, Rehman H, Ashiq Rabbani M. 2014. Morphological traits based genetic diversity in safflower (Carthamus tinctorius L.). Pak J Bot 46: 1389–1395. [Google Scholar]
  • Shojaei SH, Mostafavi K, Khosroshahli M, Bihamta MR, Ramshini H. 2020. Assessment of genotype‐trait interaction in maize (Zea mays L.) hybrids using GGT biplot analysis. Food Sci Nutr 8: 5340–5351. [CrossRef] [PubMed] [Google Scholar]
  • StatSoft Inc. 2011. Statistica (data analysis software system), version 10. www.statsoft.com. [Google Scholar]
  • Toker C, Ilhan Cagirgan M. 2004. The use of phenotypic correlations and factor analysis in determining characters for grain yield selection in chickpea (Cicer arietinum L.). Hereditas 140: 226–228 [CrossRef] [PubMed] [Google Scholar]
  • Welderufael S, Abay F, Ayana A, Amede T. 2023. Genotype by trait (GT) and genotype by yield* traits (GYT) analysis of sorghum landraces in Tigray, Northern Ethiopia. Crop Breed Genet Genom 5: e230002. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.