Open Access
Issue
OCL
Volume 31, 2024
Article Number 17
Number of page(s) 9
Section Agronomy
DOI https://doi.org/10.1051/ocl/2024015
Published online 27 August 2024
  • Bahmankar M, Nabati DA, Dehdari M. 2014. Correlation, multiple regression and path analysis for some yield-related traits in safflower. J Biodiv Environ Sci 4: 111–118. [Google Scholar]
  • Bahmankar M, Nabati DA, Dehdari M. 2017. Genetic relationships among Iranian and exotic safflower using microsatellite markers. J Crop Sci Biotech 20: 159–165. [CrossRef] [Google Scholar]
  • Bakhshi B, Oghan HA, Rameeh V, Fanaei HR, Askari A, Faraji A, Afrouzi MAAN. 2023. Analysis of genotype by environment interaction to identify high-yielding and stable oilseed rape genotypes using the GGE-biplot model. Ecol Genet Genom 28: 100187. [Google Scholar]
  • Beyyavas V, Dogan L. 2022. Yield, yield components and oil ratios of irrigated and rainfed safflower cultivars (Carthamus tinctorius L.) under semi-arid climate conditions. Appl Ecol Environ Res 20: 1807–1820. [CrossRef] [Google Scholar]
  • Dajue L, Mündel HH. 1996. Safflower, Carthamus tinctorius L. Vol. 7. Bioversity International. [Google Scholar]
  • Dwivedi SL, Upadhyaya HD, Hegde DM. 2005. Development of core collection using geographic information and morphological descriptors in safflower (Carthamus tinctorius L.) germplasm. Genet Resour Crop Evol 52: 821–830. [CrossRef] [Google Scholar]
  • Ebrahimi H, Sabaghnia N, Javanmard A, Abbasi A. 2023. Genotype by trait biplot analysis of trait relations in safflower. Agrotech Ind Crops 3: 67–73. [Google Scholar]
  • FAOSTAT. 2022. Food and Agricultural Organization of the United Nations. http://faostat.fao.org [last accessed 04.08.2024]. [Google Scholar]
  • Fattahi M, Janmohammadi M, Dashti S, Nouraein M, Sabaghnia N. 2018. Effects of nitrogen and micronutrients on the growth of safflower under limited water conditions in a high-elevation region. Biologija 64: 235–248 [CrossRef] [Google Scholar]
  • Gholami M, Sabaghnia N, Nouraein M, Shekari F, Janmohammadi M. 2018. Cluster analysis of some safflower genotypes using a number of agronomic characteristics. J Crop Breed 10: 159–166. [CrossRef] [Google Scholar]
  • Jabbari H, Fanaei HR, Shariati F, Sadeghi-Garmarodi H, Abasali M, Omidi AH. 2022. Principal components analysis of some Iranian and foreign safflower genotypes using morphological and agronomic traits. J Crops Improv 24: 125–143. [Google Scholar]
  • Kemal A, Hailu F. 2019. Genetic diversity of Safflower (Carthamus tinctorius L.) genotypes at Wollo, Ethiopia using agro-morphological traits. Trop Plant Res 6: 157–165. [Google Scholar]
  • Kammili A, Yadav P. 2022. Enhancing oleic acid and oil content in low oil and oleic type Indian safflower (Carthamus tinctorius L.). Ind Crops Products 175: 114254. [CrossRef] [Google Scholar]
  • Kizil S, Çakmak Ö, Kirici SALİHA, İnan M. 2008. A comprehensive study on safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnol Biotechnol Equip 22: 947–953. [CrossRef] [Google Scholar]
  • Kumar K, Anjoy P, Sahu S, Durgesh K, Das A, Tribhuvan KU, Gaikwad K. 2022. Single trait versus principal component-based association analysis for flowering related traits in pigeonpea. Sci Rep 12: 10453. [CrossRef] [PubMed] [Google Scholar]
  • Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN. 2008. Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res 107: 221–231. [CrossRef] [Google Scholar]
  • Lira JPE, Barelli MAA, da Silva VP, Felipin-Azevedo R, dos Santos DT, Galbiati C, Poletine JP. 2021. Safflower genetic diversity based on agronomic characteristics in Mato Grosso state, Brazil, for a crop improvement program. Conserv Gene 20: 1–12. [CrossRef] [Google Scholar]
  • Minitab Institute. 2005. Minitab user’s guide, verso 14. Harrisburg, Pennsylvania: Minitab Institute. [Google Scholar]
  • Minnie CM, Pushpavalli S, Sujatha K, Sandeep S, Sudhakar C, Rajeshwar REDDY, Rani CS. 2020. Genetic analysis for yield and its attributes in safflower (Carthamus tinctori L.). J Oilseeds Res 37: 253–259. [Google Scholar]
  • Omidi-Tabrizi AH, Gannadha MR, Peygambari SA. 1999. Study of important agronomic traits in spring cultivars of safflower by multivariate statistical methods. Iran Agric Sci J 30: 817–826. [Google Scholar]
  • Pascual-Villalobos MJ, Alburquerque N. 1995. Genetic variation of a safflower germplasm collection grown as a winter crop in southern Spain. Euphytica 92: 327–332. [CrossRef] [Google Scholar]
  • Pourdad SS, Singh JB. 2002. Evaluation of germplasm collection of safflower (Carthamus tinctorius and C. oxycantha) in dryland conditions of Iran. Indian J Genet Plant Breed 62: 87–88. [Google Scholar]
  • Rudolphi S, Becker HC, von Witzke-Ehbrecht S. 2008. Outcrossing rate of safflower (Carthamus tinctorius L.) genotypes under the agro climatic conditions of Northern Germany. 7th International Safflower Conference, Safflower: Unexploited Potential and World Adaptability, Wagga Wagga, NSW, Australia, 3–6 November 2008. [Google Scholar]
  • Sabaghnia N, Mohebodini M, Janmohammadi M. 2016. Biplot analysis of trait relations of spinach (Spinacia oleracea L.) landraces. Genetika 48: 675–690. [CrossRef] [Google Scholar]
  • Safavi SM, Pourdad SS, Safavi SA. 2013. Evaluation of drought tolerance in safflower (Carthamus tinctorius L.) under non stress and drought stress conditions. Int J Adv Biol Biomed Res 1: 1086–1093. [Google Scholar]
  • Shinwari ZK, Rehman H, Ashiq Rabbani M. 2014. Morphological traits based genetic diversity in safflower (Carthamus tinctorius L.). Pak J Bot 46: 1389–1395. [Google Scholar]
  • Shojaei SH, Mostafavi K, Khosroshahli M, Bihamta MR, Ramshini H. 2020. Assessment of genotype‐trait interaction in maize (Zea mays L.) hybrids using GGT biplot analysis. Food Sci Nutr 8: 5340–5351. [CrossRef] [PubMed] [Google Scholar]
  • StatSoft Inc. 2011. Statistica (data analysis software system), version 10. www.statsoft.com. [Google Scholar]
  • Toker C, Ilhan Cagirgan M. 2004. The use of phenotypic correlations and factor analysis in determining characters for grain yield selection in chickpea (Cicer arietinum L.). Hereditas 140: 226–228 [CrossRef] [PubMed] [Google Scholar]
  • Welderufael S, Abay F, Ayana A, Amede T. 2023. Genotype by trait (GT) and genotype by yield* traits (GYT) analysis of sorghum landraces in Tigray, Northern Ethiopia. Crop Breed Genet Genom 5: e230002. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.