Numéro
OCL
Volume 26, 2019
Lipids in the elderly: needs, nutrition and physiopathology / Les lipides pour les seniors : besoins, alimentation et physiopathologie
Numéro d'article 31
Nombre de pages 10
Section Innovation
DOI https://doi.org/10.1051/ocl/2019017
Publié en ligne 27 juin 2019
  • Allen V, Methven L, Gosney M. 2013. Use of nutritional complete supplements in older adults with dementia: Systematic review and meta-analysis of clinical outcomes. Clin Nutr 32: 950–957. [CrossRef] [PubMed] [Google Scholar]
  • ANAES. 2003. Rapport sur l’Évaluation diagnostique de la dénutrition protéino-énergétique des adultes hospitalisés. Service des recommandations professionnelles, pp. 1–15. Disponible sur https://www.has-sante.fr/portail/jcms/c_432199/fr/evaluation-diagnostique-de-la-denutrition-proteino-energetique-des-adultes-hospitalises. [Google Scholar]
  • Arends J, Baracos V, Bertz H, et al. 2017. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr 36: 1187–1196. [CrossRef] [PubMed] [Google Scholar]
  • Arrêté du 2 déc. 2009. Arrêté du 2 décembre 2009 relatif à la modification de la procédure d’inscription et des conditions de prise en charge des nutriments pour supplémentation orale inscrits à la sous-section 1, section 5, chapitre 1er, titre Ier, de la liste prévue à l’article L. 165-1 (LPP) du code de la sécurité sociale. J Off Répub Fr 0284(22): 21182–21189. [Google Scholar]
  • Assurance Maladie. 2015. Dénutrition chez la personne âgée (> 70 ans) et aide à la prescription des compléments nutritionnels oraux (CNO). Ameli.fr, Mémos et fiches d’aide à la pratique, pp. 1–2. Disponible sur https://www.ameli.fr/llle-et-vilaine/medecin/exercice-liberal/memos/prise-en-charge/complements-nutritionnels-oraux-cno. [Google Scholar]
  • Besnard P, Passilly-Degrace P, Khan NA. 2016. Taste of fat: A sixth taste modality? Physiol Rev 96: 151–176. [CrossRef] [PubMed] [Google Scholar]
  • Bing C. 2011. Lipid mobilization in cachexia: Mechanisms and mediators. Curr Opin Support Palliat Care 5: 356–360. [Google Scholar]
  • Breen L, Phillips SM. 2011. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the “anabolic resistance” of ageing. Nutr Metab 8: 68–71. [CrossRef] [PubMed] [Google Scholar]
  • Bryner RW, Woodworth-Hobbs ME, Williamson DL, Alway SE. 2012. Docosahexaenoic acid protects muscle cells from palmitate-induced atrophy. ISRN Obes. 2012, 1–14. [Google Scholar]
  • Calder PC. 2012. Long-chain fatty acids and inflammation. Proc Nutr Soc 71: 284–289. [Google Scholar]
  • Calder PC. 2015. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta 1851: 469–484. [CrossRef] [PubMed] [Google Scholar]
  • Canhada S, Castro K, Perry IS, Luft VC. 2018. Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutr Neurosci 21: 529–538. [CrossRef] [PubMed] [Google Scholar]
  • Cawood AL, Elia M, Stratton RJ. 2012. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res Rev 11(2): 278–296. [CrossRef] [PubMed] [Google Scholar]
  • Cederholm T. 2017. Fish consumption and omega-3 fatty acid supplementation for prevention or treatment of cognitive decline, dementia or Alzheimerʼs disease in older adults – Any news? Curr Opin Clin Nutr Metab Care 20: 104–109. [Google Scholar]
  • Cederholm T, Jensen GL, Correia MITD, et al. 2018. GLIM criteria for the diagnosis of malnutrition – A consensus report from the global clinical nutrition community. Clin Nutr 3: pii: S0261–5614(18)31344-X. [Google Scholar]
  • Cessot F, Desport J-C, Sautereau D. 2014. Complémentation nutritionnelle orale. HEGEL 4(3): S47–S49. [Google Scholar]
  • Clerc C. 2017. 2 millions de français dénutris. Pharma Janvier: 1–2. [Google Scholar]
  • de Clercq NC, Groen AK, Romijn JA, Nieuwdorp M. 2016. Gut microbiota in obesity and undernutrition. Adv Nutr Int Rev J 7: 1080–1089. [CrossRef] [Google Scholar]
  • Crichton M, Craven D, Mackay H, Marx W, de van der Schueren M, Marshall S. 2019. A systematic review, meta-analysis and meta regression of the prevalence of protein-energy malnutrition: Associations with geographical region and sex. Age Ageing 48(1): 38–48. [PubMed] [Google Scholar]
  • Dabadie H, Motta C, Peuchant E, LeRuyet P, Mendy F. 2006. Variations in daily intakes of myristic and α-linolenic acids in sn-2 position modify lipid profile and red blood cell membrane fluidity. Br J Nutr 96: 283–289. [CrossRef] [PubMed] [Google Scholar]
  • De Bandt J-P. 2015. Comprendre la physiopathologie de la dénutrition pour mieux la traiter. Ann Pharm Fr 73: 332–335. [CrossRef] [PubMed] [Google Scholar]
  • Delplanque B. 2014. Impact of Denutrition and lipid quality for renutrition on plasma fatty acids and inflammatory markers in old rats. Stockholm, Sweden: ISSFAL International Congress, June 28–1 July. [Google Scholar]
  • Di Girolamo FG, Situlin R, Mazzucco S, Valentini R, Toigo G, Biolo G. 2014. Omega-3 fatty acids and protein metabolism: Enhancement of anabolic interventions for sarcopenia. Curr Opin Clin Nutr Metab Care 17: 145–150. [Google Scholar]
  • Engin AB. 2017. What is lipotoxicity? Adv Exp Med Biol 960: 197–220. [CrossRef] [PubMed] [Google Scholar]
  • Ferry M. 2010. Nutrition, vieillissement et santé. Gérontol Soc. 33(134): 123–132. [Google Scholar]
  • Fiaccavento R, Carotenuto F, Vecchini A, et al. 2010. An omega-3 fatty acid-enriched diet prevents skeletal muscle lesions in a hamster model of dystrophy. Am J Pathol 177: 2176–2184. [CrossRef] [PubMed] [Google Scholar]
  • Fluitman KS, De Clercq NC, Keijser BJF, Visser M, Nieuwdorp M, IJzerman RG. 2017. The intestinal microbiota, energy balance, and malnutrition: Emphasis on the role of short-chain fatty acids. Expert Rev Endocrinol Metab 12: 215–226. [CrossRef] [PubMed] [Google Scholar]
  • Gagnon KJ, Lefort N, Poirier SJ, Barnett DA, Surette ME. 2018. 5-lipoxygenase-dependent biosynthesis of novel 20:4 n-3 metabolites with anti-inflammatory activity. Prostaglandins Leukot Essent Fat Acids 138: 38–44. [CrossRef] [Google Scholar]
  • Gaillard D, Martin C, Passilly-Degrace P, Besnard P. 2008. Rôle des lipides dans la régulation du comportement alimentaire. Ol Corps Gras Lipides 15: 275–278. [CrossRef] [Google Scholar]
  • Galmiche M, Alessandrini E, Eyrault E, et al. 2014. Influence de la concentration des compléments nutritionnels oraux sur leur observance et les apports protéino-énergétiques des patients hospitalisés: résultats d’une étude randomisée en cluster. JFHOD/SNFGE 32–33. [Google Scholar]
  • Gammack JK, Sanford AM. 2015. Caloric supplements for the elderly. Curr Opin Clin Nutr Metab Care 18: 32–36. [CrossRef] [PubMed] [Google Scholar]
  • García Almeida JM, Lupiáñez Pérez Y, Blanco Naveira M, et al. 2017. Adherencia y tolerancia como claves en la detención de la pérdida de peso en pacientes oncológicos sometidos a radioterapia mediante una estrategia de suplementación precoz con una fórmula enteral hipercalórica e hiperproteica específica. Nutr Hosp 34: 524–531. [CrossRef] [PubMed] [Google Scholar]
  • Gaur S, Sloffer EM, Ojha A, et al. 2017. Omega-3-fortified lipid-based nutrient supplement: Development, characterization, and consumer acceptability. Food Nutr Bull 38: 158–171. [CrossRef] [PubMed] [Google Scholar]
  • Graves E, Hitt A, Pariza MW, Cook ME, McCarthy DO. 2005. Conjugated linoleic acid preserves gastrocnemius muscle mass in mice bearing the colon-26 adenocarcinoma. Res Nurs Health 28: 48–55. [CrossRef] [PubMed] [Google Scholar]
  • Hanachi MG, Levenez F, Latour E, et al. 2013. P081 Étude pilote du profil électrophorétique de diversité du microbiote intestinal chez les patients dénutris atteints d’anorexie mentale (AM). Nutr Clin Métab 27: S97. [CrossRef] [Google Scholar]
  • Hanachi M, Manichanh C, Latour E, et al. 2017. Une dysbiose du microbiote intestinal comme facteur explicatif des troubles fonctionnels digestifs observés chez les patients dénutris sévères atteints d’anorexie mentale sous assistance nutritionnelle par voie entérale. Nutr Clin Métab 31, 232. [CrossRef] [Google Scholar]
  • Hankard R, Colomb V, Piloquet H, et al. 2012. Dépister la dénutrition de l’enfant en pratique courante. Arch Pédiatr 19: 1110–1117. [CrossRef] [Google Scholar]
  • HAS (Arg). 2007. Stratégie de prise en charge en cas de dénutrition protéino-énergétique chez la personne âgée – Argumentaire. Méd Mal. Métaboliques 1: 92–96. [Google Scholar]
  • HAS (Reco). 2007. Stratégie de prise en charge en cas de dénutrition protéino-énergétique chez la personne âgée – Recommandations. Méd Mal. Métaboliques 1: 92–96. [Google Scholar]
  • HAS (Synthèse). 2007. Recommandations professionnelles « Stratégie de prise en charge en cas de dénutrition protéino-énergétique chez la personne âgée » validées en avril 2007, pp. 1–4. Disponible sur https://www.has-sante.fr/portail/jcms/c_546549/fr/strategie-de-prise-en-charge-en-cas-de-denutrition-proteino-energetique-chez-la-personne-agee. [Google Scholar]
  • Hébrant A. 2014. La dénutrition du patient cancéreux et le danger de la supplémentation. Onco 8(6): 5. [Google Scholar]
  • Hébuterne X. 2012. Les acides gras n-3 sont-ils efficaces pour traiter la cachexie induite par le cancer ? La Lettre de l’Hépato-Gastroentérologue XV(1): 40–44. [Google Scholar]
  • Heckman PRA, Blokland A, Prickaerts J. 2017. From age-related cognitive decline to Alzheimer’s disease: A translational overview of the potential role for phosphodiesterases. Adv Neurobiol 17: 135–168.1 [CrossRef] [PubMed] [Google Scholar]
  • Henkel J, Alfine E, Saín J, et al. 2018. Soybean oil-derived poly-unsaturated fatty acids enhance liver damage in NAFLD induced by dietary cholesterol. Nutrients 10: 1326. [Google Scholar]
  • Herrmann FR. 1992. Serum albumin level on admission as a predictor of death, length of stay, and readmission. Arch Intern Med 152: 125–130. [CrossRef] [PubMed] [Google Scholar]
  • Kim JM, Sung MK. 2016. The efficacy of oral nutritional intervention in malnourished cancer patients: A systemic review. Clin Nutr Res 5: 219–236. [CrossRef] [PubMed] [Google Scholar]
  • Langen RCJ, Schols AMWJ, Kelders MCJM, van der Velden JLJ, Wouters EFM, Janssen-Heininger YMW. 2006. Muscle wasting and impaired muscle regeneration in a murine model of chronic pulmonary inflammation. Am J Respir Cell Mol Biol 35: 689–696. [CrossRef] [PubMed] [Google Scholar]
  • Laviano A, Di Lazzaro Giraldi G, Koverech A. 2016. Does nutrition support have a role in managing cancer cachexia? Curr Opin Support Palliat Care 10: 288–292. [CrossRef] [PubMed] [Google Scholar]
  • Lipina C, Hundal HS. 2017. Lipid modulation of skeletal muscle mass and function: Lipid regulation of skeletal muscle function. J Cachexia Sarcopenia Muscle 8: 190–201. [CrossRef] [PubMed] [Google Scholar]
  • Marshall S. 2018. Why is the skeleton still in the hospital closet? A look at the complex aetiology of protein-energy malnutrition and its implications for the nutrition care team. J Nutr Health Aging 22: 26–29. [CrossRef] [PubMed] [Google Scholar]
  • Martin C, Chevrot M, Passilly-Degrace P, Besnard P. 2010. Détection oro-sensorielle des lipides alimentaires : impacts sur le comportement alimentaire et la santé. Innov Agron 10: 81–93. [Google Scholar]
  • Milne A, Potter J, Vivanti A, Avenell A. 2009. Protein and energy supplementation in elderly people at risk from malnutrition. Cochrane Database Syst Rev 15(2): 98. [Google Scholar]
  • Monarque-Favard C, Garcia I, Abidi H, et al. (2002). Malnourished elderly people and lipid status. J Nutr Health Aging 6(6): 370–374. [PubMed] [Google Scholar]
  • Morais JA, Jacob KW, Chevalier S. 2018. Effects of aging and insulin resistant states on protein anabolic responses in older adults. Exp Gerontol 108: 262–268. [CrossRef] [PubMed] [Google Scholar]
  • O’Connor JP, Manigrasso MB, Kim BD, Subramanian S. 2014. Fracture healing and lipid mediators. Bonekey Rep 2(3): 517–523. [Google Scholar]
  • Omran ML, Morley JE. (2000). Assessment of protein energy malnutrition in older persons, part II: Laboratory evaluation. Nutrition 16: 131–140. [CrossRef] [PubMed] [Google Scholar]
  • Ould-Hamouda H. (2015). Thèse : impact de la qualité des protéines et des lipides du régime de renutrition sur la composition en acides gras, la réponse hépatique à l’insuline, la régulation de l’homéostasie énergétique et l’inflammation, chez les rats âgés Wistar souffrant de malnutrition. Université Paris-Sud, pp. 1–185. [Google Scholar]
  • Paillaud E, Herbaud S, Caillet P, Lejonc JL, Campillo B, Bories PN. 2005. Relations between undernutrition and nosocomial infections in elderly patients. Age Ageing 34: 619–625. [Google Scholar]
  • Pappalardo G, Almeida A, Ravasco P. 2015. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism. Nutrition 31: 549–555. [CrossRef] [PubMed] [Google Scholar]
  • PNNS. 2010. Dénutrition, une pathologie méconnue en société d’abondance. Paris : Ministère de la santé et des sports (éditeur), pp. 1–93. [Google Scholar]
  • Potter J, Klipstein K, Reilly JJ, Roberts M. 1995. The nutrititional status and clinical course of acute admissions to a geriatric unit. Age Ageing 24: 131–136. [CrossRef] [PubMed] [Google Scholar]
  • Preidis GA, Ajami NJ, Wong MC, Bessard BC, Conner ME, Petrosino JF. 2015. Composition and function of the undernourished neonatal mouse intestinal microbiome. J Nutr Biochem 26: 1050–1057. [CrossRef] [PubMed] [Google Scholar]
  • Raynaud-Simon A, Lesourd B. 2000. Dénutrition du sujet âgé : conséquences cliniques. Presse Med 29: 2183–2190 [PubMed] [Google Scholar]
  • Régl. (UE) 2016/128. 2016. Commission Européenne − RÉGLEMENT DÉLÉGUÉ (UE) 2016/128 DE LA COMMISSION − du 25 septembre 2015 − complétant le règlement (UE) no 609/2013 du Parlement européen et du Conseil en ce qui concerne les exigences spécifiques en matière de composition et d’information applicables aux denrées alimentaires destinées à des fins médicales spéciales. J Off Union Eur 14: L 25/30–L 25/43 [Google Scholar]
  • Schneyder A. 2014. Malnutrition and nutritional supplements. Aust Prescr 37: 120–123. [Google Scholar]
  • Smith GI, Atherton P, Reeds ND, et al. 2011. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am J Clin Nutr 93: 402–412. [Google Scholar]
  • Souliac L, Bizet G, Remy S. 2010. Concilier plaisir et nutrition. Innov Agron 10: 125–136. [Google Scholar]
  • Tachtsis B, Camera D, Lacham-Kaplan O. 2018. Potential roles of n-3 PUFAs during skeletal muscle growth and regeneration. Nutrients 10: 309–329. [Google Scholar]
  • Taylor C. 2017. Importance of nutrition in preventing and treating pressure ulcers. Nurs Older People 29: 33–39. [CrossRef] [PubMed] [Google Scholar]
  • Trabal Vilchez J. 2010. Potential usefulness of an EPA-enriched nutritional supplement on chemotherapy tolerability in cancer patients without overt malnutrition. Nutr Hosp 25(5): 736–740. [PubMed] [Google Scholar]
  • Vaitkus JA, Celi FS. 2017. The role of adipose tissue in cancer-associated cachexia. Exp Biol Med 242: 473–481. [CrossRef] [PubMed] [Google Scholar]
  • Whitehouse AS, Smith HJ, Drake JL, Tisdale MJ. 2001. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res 7: 3604–3609. [Google Scholar]
  • Yamamoto K, Kushida M, Tsuduki T. 2018. The effect of dietary lipid on gut microbiota in a senescence-accelerated prone mouse model (SAMP8). Biogerontology 19: 367–383. [Google Scholar]
  • Zhang Z, Pereira S, Luo M, Matheson E. 2017. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: A systematic review and meta-analysis. Nutrients 9: 829–849. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.