Open Access
Numéro
OCL
Volume 24, Numéro 1, January-February 2017
Numéro d'article D106
Nombre de pages 11
Section Dossier: Oil- and protein-crops and climate change / Oléoprotéagineux et changement climatique
DOI https://doi.org/10.1051/ocl/2017002
Publié en ligne 27 février 2017
  • Auspurger CK. 2013. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology 94 (1): 41–50. [CrossRef] [PubMed] [Google Scholar]
  • Ball MC, Harris-Pascal D, Egerton JJG, Lenne T. 2012. The paradoxical increase in freezing injury in a warming climate: frost as a driver of change in cold climate vegetation. In: Storey KB, Tanino KK, eds. CABI (H ISBN 9781845938222), pp. 179–185 (chapter 12). [Google Scholar]
  • Biarnès V, Lecomte C, Lejeune I, Hascoët E. 2016. Pois d'hiver : la resistance au froid bientôt décryptée. Perspect Agric 436: 32–35. [Google Scholar]
  • Boulard D, Castel T, Camberlin P, et al. 2015. Capability of a regional climate model to simulate climate variables requested for water balance computation: a case study over northeastern France. Clim Dyn 46: 2689. DOI:10.1007/s00382-015-2724-9. [CrossRef] [Google Scholar]
  • Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F. 2010. Why are wheat yields stagnating in Europe ? A comprehensive data analysis for France. Field Crops Res 119 (1): 201–212. [Google Scholar]
  • Brulebois E, Castel T, Richard Y, Chateau-Smith C, Amiotte-Suchet P. 2015. Hydrological response to an abrupt shift in surface air temperature over France in 1987/88. J Hydrol 531 (3): 892–901. DOI:10.1016/j.jhydrol.2015.10.026. [CrossRef] [Google Scholar]
  • Cannell MGR, Smith RI. 1986. Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23: 177–191. [CrossRef] [Google Scholar]
  • Castel T, Lecomte C, Richard Y, Lejeune-Hénault I, Larmure A. 2014. Le réchauffement climatique diminue t-il le risque de dégâts de gel pour les cultures de climat tempéré ? Colloque AIC 2-5 juillet 2014, Dijon. [Google Scholar]
  • de Laat ATJ, Crok M. 2013. A late 20th century European climate shift: fingerprint of regional brightening ? Atmos Clim Sci 3: 291–300. DOI:10.4236/acs.2013.33031. [Google Scholar]
  • Duc G, Blancard S, Hénault C, et al. 2010. Potentiels et leviers pour développer la production et l'utilisation des protéagineux dans le cadre d'une agriculture durable en Bourgogne. Innov Agron 11: 157–173. [Google Scholar]
  • Duchêne E, Schneider C. 2009. Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25 (1): 93–99 <hal-00886271>. [Google Scholar]
  • Gate P, Blondlot A, Gouache D, Deudon O, Vignier L. 2008. Impacts du changement climatique sur la croissance et le développement du blé en France. OCL 15 (5): 332–336. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gu L, Hanson PJ, Post WM, et al. 2008. The 2007 eastern us spring freeze: increased cold damage in a warming world ? BioScience 58: 253–262. [Google Scholar]
  • Hänninen H. 1991. Does climatic warming increase the risk of frost damage in northern trees ? Plant Cell Environ 14: 449–454. DOI:10.1111/j.1365-3040.1991.tb01514.x. [Google Scholar]
  • Hänninen H. 2006. Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26: 889–898. [CrossRef] [PubMed] [Google Scholar]
  • Hengl T, Heuvelink GBM, Rossiter DG. 2007. About regression-kriging: from equations to case studies. Comput Geosci 33 (10): 1301–1315. [Google Scholar]
  • Hiemstra PH, Pebesma EJ, Twenhöfel CJW, Heuvelink GBM. 2009. Real-time automatic interpolation of ambient gamma dose rates from the Dutch Radioactivity Monitoring Network. Comput Geosci 35: 1711–1721. [Google Scholar]
  • Jensen ES, Hauggaard-Nielsen H. 2003. How can increased use of biological N2 fixation in agriculture benefit the environment ? Plant Soil 252: 177–186. [CrossRef] [Google Scholar]
  • Kacperska-Palacz A. 1978. Mechanism of cold acclimation in herbaceous plants. In: Li PH, Sakai A, eds. Plant cold hardiness and freezing stress. Mechanisms and crop implications. Vol. 1. New York: Academic Press, pp. 261–272. [Google Scholar]
  • Kalberer SR, Wisniewski M, Arora R. 2006. Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171: 3–16. [CrossRef] [Google Scholar]
  • Kreyling J. 2010. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91: 1939–1948. DOI:10.1890/09-1160.1. [CrossRef] [PubMed] [Google Scholar]
  • Kruschke JK. 2013. Bayesian estimation supersedes the t test. J Exp Psychol Gen 142: 573–603. [Google Scholar]
  • Lecomte C, Giraud A, Aubert V. 2003. Testing a predicting model for frost resistance of winter wheat in natural conditions. Agronomie 23: 51–66. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lloyd CD. 2011. Local models for spatial analysis. Boca Raton: CRC Press. http://www.crcpress.com/product/isbn/9781439829196. [Google Scholar]
  • Lobell DB, Bonfils C, Duffy PB. 2007. Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison, Geophys Res Lett 34: L05715. DOI:10.1029/2006GL028726. [CrossRef] [Google Scholar]
  • Moore FC, Lobell DB. 2014. Adaptation potential of European agriculture in response to climate change. Nat Clim Change 4 (7): 610–614. [CrossRef] [Google Scholar]
  • Nemecek T, von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H. 2008. Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28 (3): 380–393. [CrossRef] [Google Scholar]
  • Pagter M, Arora R. 2013. Winter survival and deacclimation of perennials under warming climate: physiological perspectives. Physiol Plant 147: 75–87. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team. 2016. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL: https://www.R-project.org/. [Google Scholar]
  • Rammig A, Jonsson AM, Hickler T, Smith B, Barring L, Sykes M. 2010. Impacts of changing frost regimes on Swedish forests: incorporating cold hardiness in a regional ecosystem model. Ecol Model 221: 303–313. [CrossRef] [Google Scholar]
  • Reid PC, Beaugrand G. 2012. Global synchrony of an accelerating rise in sea surface temperature. J Mar Biol Assoc. 92 (7): 1435–1450. DOI:10.1017/S0025315412000549. [CrossRef] [Google Scholar]
  • Reid PC, Hari RE, Beaugrand G, et al. 2016. Global impacts of the 1980s regime shift. Glob Change Biol 22: 682–703. DOI:10.1111/gcb.13106. [Google Scholar]
  • Richard Y, Castel T, Bois B, et al. 2014. Évolution des températures observées en Bourgogne (1961–2011). Bourgogne Nat 19: 110–117. [Google Scholar]
  • Rigby JR, Porporato A. 2008. Spring frost risk in a changing climate. Geophys Res Lett 35: L12703. DOI:10.1029/2008GL033955. [Google Scholar]
  • Roberts DWA. 1979. Duration of hardening and cold hardiness in winter wheat. Can J Bot 57: 1511–1517. [CrossRef] [Google Scholar]
  • Thorsen SM, Höglind M. 2010. Modelling cold hardening and dehardening in timothy. Sensitivity analysis and Bayesian model comparison. Agric For Meteorol 150: 1529–1542. [CrossRef] [Google Scholar]
  • Trnka M, Rötter RP, Ruiz-Ramos M, et al. 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Change 4: 637–643. DOI:10.1038/nclimate2242. [CrossRef] [Google Scholar]
  • Trnka M, Hlavinka P, Semenov MA. 2016. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. J R Soc Interface 12 (112): 20150721. DOI:10.1098/rsif.2015.0721. [CrossRef] [Google Scholar]
  • Vadez V, Berger J.D, Warkentin T, et al. 2012. Adaptation of grain legumes to climatic changes: a review. Agron Sustain Dev 32 (1): 31–44. DOI: 10.1007/s13593-011-0020-6. [Google Scholar]
  • Whaley JM, Kirby EJM, Spink JH, Foulkes MJ, Sparkes DL. 2004. Frost damage to winter wheat in the UK: the effect of plant population density. Eur J Agron 21 (1): 105–115. [CrossRef] [Google Scholar]
  • Woldendrop G, Hill MJ, Doran R, Ball MC. 2008. Frost in a future climate: modelling interactive effects of warmer temperatures and rising atmospheric [CO2] on the incidence and severity of frost damage in a temperate evergreen (Eucalyptus pauciflora). Glob Change Biol 14: 294–308. [CrossRef] [Google Scholar]
  • Wurr DCE, Fellows JR, Fuller MP. 2004. Simulated effects of climate change on the production pattern of winter cauliflower in the UK. Sci Horticult 101 (4): 359–372. [CrossRef] [Google Scholar]
  • Xiao D, Li J, Zhao P. 2012. Four-dimensional structures and physical process of the decadal abrupt changes of the northern extratropical ocean–atmosphere system in the 1980s. Int J Climatol 32: 983–994. DOI:10.1002/joc.2326. [CrossRef] [Google Scholar]
  • Zheng BY, Chenu K, Dreccer MF, Chapman SC. 2012. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties ? Glob Change Biol 18: 2899–2914. [Google Scholar]
  • Zheng B, Chapman SC, Christopher JT, Frederiks TM, Chenu K. 2015. Frost trends and their estimated impact on yield in the Australian wheatbelt. J Exp Bot 66 (12): 3611–3623. DOI:10.1093/jxb/erv163. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.