Open Access
Review
Numéro
OCL
Volume 24, Numéro 1, January-February 2017
Numéro d'article D102
Nombre de pages 15
Section Dossier: Oil- and protein-crops and climate change / Oléoprotéagineux et changement climatique
DOI https://doi.org/10.1051/ocl/2016052
Publié en ligne 14 février 2017
  • Aboudrare A, Debaeke P, Bouaziz A, Chekli H. 2006. Effects of soil tillage and fallow management on soil water storage and sunflower production in a semiarid Mediterranean climate. Agric Water Manag 83: 183–196. [CrossRef] [Google Scholar]
  • Ahmad R, Waraich EA, Ashraf MY, Ahmad S, Aziz T. 2014. Does nitrogen fertilization enhance drought tolerance in sunflower? A review. J Plant Nutr 37: 942–963. [CrossRef] [Google Scholar]
  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165: 351–372. [CrossRef] [PubMed] [Google Scholar]
  • Ainsworth EA, Leakey ADB, Ort DR, Long SP. 2008. FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated (CO2) impacts on crop yield and food supply. New Phytol 179: 5–9. [CrossRef] [PubMed] [Google Scholar]
  • Alline C. 2009. Modélisation écophysiologique et analyse génétique pour la recherche de génotypes de tournesol adaptés aux basses températures causées par des semis précoces, PhD Thesis. France : INP Toulouse. [Google Scholar]
  • Andrianasolo FN, Casadebaig P, Champolivier L, Maza E, Maury P, Debaeke P. 2014. Prediction of sunflower grain oil concentration as a function of variety, crop management and environment by the means of statistical models. Eur J Agron 54: 84–96. [CrossRef] [Google Scholar]
  • Andrianasolo FN, Debaeke P, Champolivier L, Maury P. 2016a. Analysis and modelling of the factors controlling seed oil content in sunflower: a review. OCL 23 (2): D206. [CrossRef] [EDP Sciences] [Google Scholar]
  • Andrianasolo FN, Casadebaig P, Langlade N, Debaeke P, Maury P. 2016b. Effects of growth stage and leaf ageing on transpiration and photosynthesis response to soil water stress in sunflower. Funct Plant Biol 43: 797–805. [CrossRef] [PubMed] [Google Scholar]
  • Astiz V, Hernández LF. 2013. Pollen production in sunflower (Helianthus annuus L.) is affected by air temperature and relative humidity during early reproductive growth. Phyton (Buenos Aires) 82: 297–302. [Google Scholar]
  • Bellarby J, Wattenbach M, Tuck G, Glendining MJ, Smith P. 2010. The potential distribution of bioenergy crops in the UK under present and future climate. Biomass Bioenergy 34: 1935–1945. [CrossRef] [Google Scholar]
  • BIO IS. 2010. Analyses de Cycle de Vie appliquées aux biocarburants de première génération consommés en France − Rapport final. Coordination ADEME, 236 p. [Google Scholar]
  • Brisson N, Gary C, Justes E, et al. 2003. An overview of the crop model STICS. Eur J Agron 18: 309–332. [CrossRef] [Google Scholar]
  • Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huard F. 2010. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res 119: 201–212. [Google Scholar]
  • Cabelguenne M, Debaeke P. 1998. Experimental determination and modelling of the soil water extraction capacities of maize, sunflower, soya bean, sorghum and wheat. Plant Soil 202: 175–192. [CrossRef] [Google Scholar]
  • Cabelguenne M, Debaeke P, Bouniols A. 1999. EPIC phase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybean and winter wheat. Agric Syst 60: 175–196. [CrossRef] [Google Scholar]
  • Caldeira CF, Jeanguenin L, Chaumont F, Tardieu F. 2014. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Nat Commun 5: 5365. [CrossRef] [PubMed] [Google Scholar]
  • Carter TR, Porter JH, Parry ML. 1991. Climatic warming and crop potential in Europe: prospects and uncertainties. Glob Environ Change 1: 291–312. [CrossRef] [Google Scholar]
  • Casadebaig P, Debaeke P, Lecoeur J. 2008. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. Eur J Agron 28: 646–654. [CrossRef] [Google Scholar]
  • Casadebaig P, Guilioni L, Lecoeur J, Christophe A, Champolivier L, Debaeke P. 2011. SUNFLO, a model to simulate genotype-specific performance of sunflower crop in contrasting environments. Agric For Meteorol 151: 163–178. [CrossRef] [Google Scholar]
  • Casadebaig P, Mestries E, Debaeke P. 2016. A model-based approach to assist variety evaluation in sunflower crop. Eur J Agron 81: 92–105. [CrossRef] [Google Scholar]
  • Ceccarelli S, Grando S, Maatougui M, et al. 2010. Plant breeding and climate changes. J Agric Sci 148: 627–637. [CrossRef] [Google Scholar]
  • Chamer AM, Medan D, Mantese AI, Bartoloni NJ. 2015. Impact of pollination on sunflower yield: is pollen amount or pollen quality what matters ? Field Crops Res 176: 61–70. [CrossRef] [Google Scholar]
  • Champolivier L, Debaeke P, Merrien A. 2011. Pourquoi irriguer le tournesol, une culture réputée tolérante à la sécheresse ? Innov Agron 14: 151–164. [Google Scholar]
  • Chapman SC, Hammer GL, Meinke H. 1993. A sunflower simulation-model: 1. Model development. Agron J 85: 725–735. [CrossRef] [Google Scholar]
  • Cheng W, Sims DA, Luo Y, Coleman JS, Johnson DW. 2000. Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations: an invariant NPP:GPP ratio? Glob Change Biol 6: 931–941. [CrossRef] [Google Scholar]
  • Chimenti CA, Hall AJ. 2001. Grain number responses to temperature during floret differentiation. Field Crops Res 72: 177–185. [CrossRef] [Google Scholar]
  • Chimenti CA, Hall AJ, López MS. 2001. Embryo-growth rate and duration in sunflower as affected by temperature. Field Crops Res 69: 81–88. [CrossRef] [Google Scholar]
  • Chimenti CA, Pearson J, Hall AJ. 2002. Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Res 75: 235–246. [CrossRef] [Google Scholar]
  • Coakley SM, Scherm H, Chakraborty S. 1999. Climate change and plant disease management. Annu Rev Phytopathol 37: 399–426. [Google Scholar]
  • Connor DJ, Hall AJ. Sunflower physiology. In: Schneiter AA, ed. Sunflower Technology and Production. Madison, Wisconsin, USA: ASA, 1997, pp. 113–182. [Google Scholar]
  • Conroy JP, Virgona JM, Smillie RM, Barlow EW. 1988. Influence of drought acclimation and CO2 enrichment on osmotic adjustment and chlorophyll a fluorescence of sunflower during drought. Plant Physiol 86: 1108–1115. [CrossRef] [PubMed] [Google Scholar]
  • Constantin J, Willaume M, Murgue C, Lacroix B, Therond O. 2015. The soil-crop models STICS and AqYield predict yield and soil water content for irrigated crops equally well with limited data. Agric For Meteorol 206: 55–68. [Google Scholar]
  • Cook S. 2009. Sunflowers and climate change. http://www.warwick.ac.uk/go/climatechange/innovation-network. [Google Scholar]
  • Debaeke P, Aboudrare A. 2004. Adaptation of crop management to water-limited environments. Eur J Agron 21: 433–446. [Google Scholar]
  • Debaeke P, Bergez JE, Leenhardt D. 2008. Perspectives agronomiques et génétiques pour limiter ou réguler la demande en eau d'irrigation. La Houille Blanche, Revue Internationale de l'Eau 2008–6: 17–25. [CrossRef] [EDP Sciences] [Google Scholar]
  • Debaeke P, Mestries E, Desanlis M, Seassau C. 2014. Effects of crop management on the incidence and severity of fungal diseases in sunflower. In: Arribas JE, ed. Sunflowers: growth and development, environmental influences and pests/diseases. New York, USA: Nova Science Pubs, pp. 201–226. [Google Scholar]
  • Debaeke P, Coque M, Muños S, et al. 2015. Breeding for sunflower hybrids adapted to climate change: the SUNRISE collaborative and multi-disciplinary project. In: Proceedings of Climate-Smart Agriculture 2015, Global Science Conference, Montpelier, 16–18 March, 2015. [Google Scholar]
  • De Grandi-Hoffman G, Watkins JC. 2000. The foraging activity of honey bees Apis mellifera and non-Apis bees on hybrid sunflowers (Helianthus annuus) and its influence on cross-pollination and seed set. J Apic Res 39: 37–45. [CrossRef] [Google Scholar]
  • De Klein C, Novoa RSA, Ogle S, et al. 2006. Chapter 11 – N2O emissions from managed soils, and CO2 emissions from lime and urea application. In: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. [Google Scholar]
  • De la Haba P, De la Mata L, Molina E, Agüera E. 2014. High temperature promotes early senescence in primary leaves of sunflower (Helianthus annuus L) plants. Can J Plant Sci 94: 659–669. [CrossRef] [Google Scholar]
  • De la Mata L, Cabello P, de la Haba P, Agüera E. 2012. Growth under elevated atmospheric CO2 concentration accelerates leaf senescence in sunflower (Helianthus annuus L) plants. J Plant Physiol 169: 1392–1400. [CrossRef] [PubMed] [Google Scholar]
  • De la Mata L, De la Haba P, Alamillo JM, Pineda M, Agüera E. 2013. Elevated CO2 concentrations alter nitrogen metabolism and accelerate senescence in sunflower (Helianthus annuus L) plants. Plant Soil Environ 59: 303–308. [Google Scholar]
  • Delaplane KS, Mayer DF. 2000. Crop pollination by bees. New York: CABI. [CrossRef] [Google Scholar]
  • Delos M, Moinard J. 1997. Phomopsis du tournesol: nouveaux progrès dans la prévision des épidémies. Phytoma 492: 17–21. [Google Scholar]
  • Demir AO, Göksoy AT, Buyukcangaz H, Turan ZM, Koksal ES. 2006. Deficit irrigation of sunflower (Helianthus annuus L) in a sub-humid climate. Irrig Sci 24: 279–289. [CrossRef] [Google Scholar]
  • Donatelli M, Duveiller G, Fumagalli D, et al. 2012. Assessing agriculture vulnerabilities for the design of effective measures for adaption to climate change (AVEMAC project) European Union. Luxembourg: Joint Research Centre, Publications Office of the European Union, doi: 102788/16181. [Google Scholar]
  • Donatelli M, Srivastava AK, Duveiller G, Niemeyer S, Fumagalli D. 2015. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe. Environ Res Lett 10: 075005. [CrossRef] [Google Scholar]
  • Falloon P, Betts R. 2010. Climate impacts on European agriculture and water management in the context of adaptation and mitigation − the importance of an integrated approach. Sci Total Environ 408: 5667–5687. [Google Scholar]
  • Gallai N, Salles JM, Settele J, Vaissière BE. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68: 810–821. [CrossRef] [Google Scholar]
  • Garcia-Lopez J, Lorite IJ, Garcia-Ruiz R, Dominguez J. 2014. Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling. Clim Change 124: 147–162. [CrossRef] [Google Scholar]
  • García-Vila M, Fereres E, Prieto MH, Ruz C, Soriano MA. 2012. Sunflower. In: Crop yield response to water FAO Irrigation and Drainage, Paper 66. [Google Scholar]
  • Gibbons JM, Ramsden SJ. 2008. Integrated modelling of farm adaptation to climate change in East Anglia, UK: scaling and farmer decision-making. Agric Ecosyst Environ 127: 126–134. [CrossRef] [Google Scholar]
  • Gimeno V, Fernández-Martínez JM, Fereres E. 1989. Winter planting as a means of drought escape in sunflower. Field Crops Res 22: 307–316. [CrossRef] [Google Scholar]
  • Göksoy AT, Demir AO, Turan ZM, Dagüstü N. 2004. Responses of sunflower (Helianthus annuus L) to full and limited irrigation at different growth stages. Field Crops Res 87: 167–178. [CrossRef] [Google Scholar]
  • Granli T, Bøckman OC. 1994. Nitrous oxide from agriculture. Nor J Agric Sci supplement No 12: 128. [Google Scholar]
  • Graß R, Thies B, Kersebaum KC, Wachendorf M. 2015. Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change. Eur J Agron 70: 1–10. [Google Scholar]
  • Griffin KL, Seemann JR. 1996. Plants, CO2 and photosynthesis in the 21st century. Chem Biol 3: 245–254. [CrossRef] [PubMed] [Google Scholar]
  • Guilioni L, Brisson N, Levrault F. 2010. Eléments sur le changement climatique et la culture de tournesol. Livre Vert du projet Climator (2007–2010). Angers (France): ADEME Editions, pp. 201–212. [Google Scholar]
  • Gulya T, Rashid KY, Masirevic SM. 1997. Sunflower diseases. In: Schneiter AA, ed. Sunflower production and technology. Agronomy monograph 35. Madison, WI, USA: Soil Science Society of America. [Google Scholar]
  • Harris HC, McWilliams JR, Mason WK. 1978. Influence of temperature on oil content and composition of sunflower seed. Aust J Agric Res 29: 1203–1212. [CrossRef] [Google Scholar]
  • Harrison PA, Butterfield RE. 1996. Effects of climate change on Europe-wide winter wheat and sunflower productivity. Clim Res 7: 225–241. [CrossRef] [Google Scholar]
  • Houmanat K, El Fechtali M, Mazouz H, Nabloussi A. 2016. Assessment of sunflower germplasm selected under autumn planting conditions. In: Proceedings of the 19th International Sunflower Conference, Edirne, Turkey, pp. 286–293. [Google Scholar]
  • Hui D, Luo Y, Cheng W, Coleman JS, Johnson DW, Sims D. 2001. Canopy radiation- and water-use efficiencies as affected by elevated [CO2]. Glob Change Biol 7: 75–91 [CrossRef] [Google Scholar]
  • IPCC. 2007. In: Pachauri RK, Reisinger A, eds. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland : IPCC, 104 p. [Google Scholar]
  • IPCC. 2014. In: Pachauri RK, Meyer LA, eds. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland : IPCC, 151 p. [Google Scholar]
  • Jablonski LM, Wang X, Curtis PS. 2002. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156: 9–26. [CrossRef] [Google Scholar]
  • Killi D, Bussotti F, Raschi A, Haworth M. 2016. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol Plant [Epub ahead of print]. doi: 10.1111/ppl.12490. [Google Scholar]
  • Kiniry JR, Blanchet R, Williams JR, Texier V, Jones CA, Cabelguenne M. 1992. Sunflower simulation using the EPIC and Almanac models. Field Crops Res 30: 402–423. [CrossRef] [Google Scholar]
  • Kjøhl M, Nielsen A, Stenseth NC. 2011. Potential effects of climate change on crop pollination. Rome: FAO, 38 p. [Google Scholar]
  • Klocke NL, Currie RS, Tomsicek DJ, Koehn JW. 2013. Sunflower response to irrigation from limited water supplies with no-till management. Trans ASABE 56: 167–175. [CrossRef] [Google Scholar]
  • Lamarque C. 1983. Conditions climatiques nécessaires à la contamination du tournesol par Sclerotinia sclerotiorum ; prévision des épidémies locales. Bull OEPP 13: 75–78. [CrossRef] [Google Scholar]
  • Long SP, Ainsworth EA, Leakey ADB, Ort DR. 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 conditions. Science 312: 1918–1921. [CrossRef] [PubMed] [Google Scholar]
  • Lotze-Campen H. 2011. Regional climate impacts on agriculture in Europe. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE, eds. Crop adaptation to climate change. Chichester, West Sussex (UK): John Wiley and Sons Ltd., pp. 78–83. [CrossRef] [Google Scholar]
  • Luo Y, Hui D, Cheng W, Coleman JS, Johnson DW, Sims DA. 2000. Canopy quantum yield in a mesocosm study. Agric For Meteorol 100: 35–48. [CrossRef] [Google Scholar]
  • Mangin B, Casadebaig P, Cadic E, et al. 2016. Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modeling and genome-wide association. Plant Cell Environ (in press). [Google Scholar]
  • Martre P, Wallach D, Asseng S, et al. 2015. Multimodel ensembles of wheat growth: many models are better than one. Glob Change Biol 21: 911–925. [CrossRef] [Google Scholar]
  • Moriondo M, Bindi M. 2007. Impact of climate change on the phenology of typical Mediterranean crops. Ital J Agrometeorol 3: 5–12. [Google Scholar]
  • Moriondo M, Giannakopoulos C, Bindi M. 2011. Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104: 679–701. [CrossRef] [Google Scholar]
  • Müller A, Diener S, Schnyder S, Stutz K, Sedivy C, Dorn S. 2006. Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee–flower relationships. Biol Conserv 130: 604–615. [CrossRef] [Google Scholar]
  • Niemelä TA, Tulisalo UE. 2000. Sunflower hybrids adapted to the finnish growing conditions. In: Proceedings of the 15th International Sunflower Conference, Toulouse (France), N, pp. 22–26. [Google Scholar]
  • Olesen JE, Bindi M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16: 239–262. [CrossRef] [Google Scholar]
  • Olivier D, Bernoux M, Chauveau M, Lucas C, Chazot S. 2016. Étude de l'effet du changement climatique sur le potentiel de développement des productions végétales en Russie, Ukraine, Kazakhstan à moyen terme. Rapport final, BRL Ingénierie, Nimes (France). Étude financée par MAAF, France AgriMer et Intercéréales, 58 p + annexes. [Google Scholar]
  • Ottman MJ, Kimball BA, White JW, Wall GW. 2012. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron J 104: 7–16. [CrossRef] [Google Scholar]
  • Oz M, Karasu A, Cakmak I, Goksoy AT, Turan ZM. 2009. Effects of honeybee (Apis mellifera) pollination on seed set in hybrid sunflower (Helianthus annuus L). Afr J Biotechnol 8: 1037–1043. [Google Scholar]
  • Pal M, Chaturvedi AK, Pandey SK, Bahuguna RN, Khetarpal S, Anand A. 2014. Rising atmospheric CO2 may affect oil quality and seed yield of sunflower (Helianthus annuus L). Acta Physiol Plant 36: 2853–2861. [CrossRef] [Google Scholar]
  • Pankovic D, Sakac Z, Kevresan S, Plesnicar M. 1999. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. J Exp Bot 50: 128–138. [CrossRef] [Google Scholar]
  • Parent B, Tardieu F. 2012. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol 194: 760–774. [CrossRef] [PubMed] [Google Scholar]
  • Peltonen-Sainio P, Jauhiainien L, Hakala K, Ojanen H. 2009. Climate change and prolongation of growing season: changes in regional potential for field production in Finland. Agric Food Sci 18: 171–190. [CrossRef] [Google Scholar]
  • Porter JR, Xie L, Challinor V, et al. 2014. Food security and food production systems. In: Climate change 2014: impacts, adaptation, and vulnerability. Cambridge, UK/New York, USA: Cambridge University Press, pp. 485–533. [Google Scholar]
  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25: 345–353. [CrossRef] [PubMed] [Google Scholar]
  • Raes D, Steduto P, Hsiao TC, Fereres E. 2009. AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron J 101: 438–447. [CrossRef] [Google Scholar]
  • Ricroch AE, Henard-Damave MC. 2016. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 36: 675–690. [PubMed] [Google Scholar]
  • Rinaldi M. 2001. Application of EPIC model for irrigation scheduling of sunflower in Southern Italy. Agric Water Manag 49: 185–196. [CrossRef] [Google Scholar]
  • Rinaldi M, Rascio A, Garofalo P. 2015. Sunflower and biomass sorghum photosynthesis response to CO2 enrichment. Rom Agric Res 32: 113–122. [Google Scholar]
  • Rondanini D, Savin R, Hall AJ. 2003. Dynamics of fruit growth and oil quality of sunflower (Helianthus annuus L) exposed to brief intervals of high temperature during grain filling. Field Crops Res 83: 79–90. [CrossRef] [Google Scholar]
  • Rondanini D, Mantese A, Savin R, Hall AJ. 2006. Responses of sunflower yield and grain quality to alternating day/night high temperature regimes during grain filling: effects of timing, duration and intensity of exposure to stress. Field Crops Res 96: 48–62. [CrossRef] [Google Scholar]
  • Sadok W. 2016. The circadian life of nocturnal water use: when late night decisions help improve your day. Plant Cell Environ 39: 1–2. [CrossRef] [PubMed] [Google Scholar]
  • Salvi F, Pouzet A. 2010. Étude sur les causes possibles du ralentissement du progrès agronomique en colza d'hiver et en tournesol. CR Académie d'Agriculture de France 96 (3): 24–32. [Google Scholar]
  • Sarova J, Kudlikova I, Zalud Z, Veverka K. 2003. Macrophomina phaseolina (Tassi) Goid moving north − temperature adaptation or change in climate? J Plant Dis Prot 110: 444–448. [Google Scholar]
  • Scaven VL, Rafferty NE. 2013. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr Zool 59: 418–426. [CrossRef] [PubMed] [Google Scholar]
  • Schoppach R, Sadok W. 2013. Transpiration sensitivities to evaporative demand and leaf areas vary with night and day warming regimes among wheat genotypes. Funct Plant Biol 40: 708–718. [CrossRef] [Google Scholar]
  • Seassau C, Debaeke P, Mestries E, Dechamp-Guillaume G. 2010. Evaluation of P. macdonaldii inoculation methods to reproduce sunflower premature ripening. Plant Dis 94: 1398–1404. [CrossRef] [PubMed] [Google Scholar]
  • Seguin B. 2003. Adaptation des systèmes de production agricole au changement climatique. CR Geosci 335: 569–575. [CrossRef] [Google Scholar]
  • Seneweera S, Norton RM. 2011. Plant responses to increased carbon dioxide. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE, eds. Crop adaptation to climate change. Chichester, West Sussex (UK): John Wiley and Sons Ltd., pp. 198–217. [CrossRef] [Google Scholar]
  • Sims DA, Cheng W, Luo Y, Seemann JR. 1999. Photosynthetic acclimation to elevated CO2 in a sunflower canopy. J Exp Bot 50: 645–653. [CrossRef] [Google Scholar]
  • Soriano MA, Orgaz F, Villalobos FJ, Fereres E. 2004. Efficiency of water use of early plantings of sunflower. Eur J Agron 21: 465–476. [Google Scholar]
  • Srinivasarao C, Kundu S, Shanker AK, et al. 2016. Continuous cropping under elevated CO2: differential effects on C4 and C3 crops, soil properties and carbon dynamics in semi-arid alfisols. Agric Ecosyst Environ 218: 73–86. [CrossRef] [Google Scholar]
  • Stöckle CO, Donatelli M, Nelson R. 2003. CropSyst, a cropping systems simulation model. Eur J Agron 18: 289–307. [CrossRef] [Google Scholar]
  • Taub DR, Miller B, Allen H. 2008. Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14: 565–575. [CrossRef] [Google Scholar]
  • Tezara W, Mitchell V, Driscoll SP, Lawlor DW. 2002. Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53: 1781–1791. [CrossRef] [PubMed] [Google Scholar]
  • Todorovic M, Albrizio R, Zivotic L, Abi Saab MT, Stöckle C, Steduto P. 2009. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron J 101: 509–521. [CrossRef] [Google Scholar]
  • Tourvieille de Labrouhe D, Pilorgé E, Nicolas P, Vear F. 2000. Le mildiou du tournesol. Paris, France : Editions Quae. [Google Scholar]
  • Tubiello FN, Donatelli M, Rosenzweig C, Stockle CO. 2000. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur J Agron 13: 179–189. [CrossRef] [Google Scholar]
  • Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M. 2006. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 30: 183–197. [CrossRef] [Google Scholar]
  • Valverde P, de Carvalho M, Serralheiro R, Maia R, Ramos V, Oliveira B. 2015. Climate change impacts on rainfed agriculture in the Guadiana riverbasin (Portugal). Agric Water Manag 150: 35–45. [CrossRef] [Google Scholar]
  • Vanaja M, Yadav SK, Archana G, et al. 2011. Response of C4 (maize) and C3 (sunflower) crop plants to drought stress and enhanced carbon dioxide concentration. Plant Soil Environ 57: 207–215. [Google Scholar]
  • Vear F. 2016. Changes in sunflower breeding over the last fifty years. OCL 23 (2): D202. [CrossRef] [EDP Sciences] [Google Scholar]
  • Villalobos FJ, Hall AJ, Ritchie JT, Orgaz F. 1996. OILCROP-SUN: a development, growth, and yield model of the sunflower crop. Agron J 88: 403–415. [CrossRef] [Google Scholar]
  • Virgona J, Hubick K, Rawson H, Farquhar G, Downes R. 1990. Genotypic variation in transpiration efficiency, carbon-isotype discrimination and carbon allocation during early growth in sunflower. Funct Plant Biol 17: 207–214. [Google Scholar]
  • Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE, eds. 2011. Crop adaptation to climate change. Chichester, West Sussex (UK): John Wiley and Sons Ltd., 595 p. [CrossRef] [Google Scholar]
  • Zeng W, Wu J, Hoffman MP, Xu C, Ma T, Huang J. 2016. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China. Field Crops Res 192: 42–54 [CrossRef] [Google Scholar]
  • Ziska LH, Bunce JA, Shimono H, et al. 2012. Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc R Soc B: Biol Sci 279: 4097–4105. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.