Open Access
Numéro
OCL
Volume 23, Numéro 5, September-October 2016
Numéro d'article D507
Nombre de pages 6
Section Dossier: New perspectives of European oleochemistry / Les nouvelles perspectives de l’oléochimie européenne
DOI https://doi.org/10.1051/ocl/2016038
Publié en ligne 30 septembre 2016
  • Behr A, Toepell S, Harmuth S. 2014. Cross-metathesis of methyl 10-undecenoate with dimethyl maleate: an efficient protocol with nearly quantitative yields. RSC Adv. 4: 16320–16326. [Google Scholar]
  • Bernard D, Mahe Y. 2007. Eur. Pat. Appl. EP 1754513 A2 20070221. [Google Scholar]
  • Caijo F, Tripoteau F, Bellec A, et al. 2013. Screening of a selection of commercially available homogeneous Ru-catalysts in valuable olefin metathesis transformations. Catal. Sci. Technol. 3: 429–435. [CrossRef] [Google Scholar]
  • Carlsson AS. 2009. Plant oils as feedstock alternatives to petroleum – A short survey of potential oil crop platforms. Biochimie 91: 665–670. [CrossRef] [PubMed] [Google Scholar]
  • Chatterjee AK, Choi TL, Sanders DP, Grubbs, RH. 2003. A General Model for Selectivity in Olefin Cross Metathesis. J. Am. Chem. Soc. 125: 11360–11370. [CrossRef] [PubMed] [Google Scholar]
  • Chikkali S, Mecking S. 2012. Refining of Plant Oils to Chemicals by Olefin Metathesis. Ang. Chem. Int. Ed. 51: 5802–5808. [Google Scholar]
  • Dufaure C, Leyris J, Rigal L, Mouloungui Z. 1999. A twin-screw extruder for oil extraction: I. Direct expression of oleic sunflower seeds. J. Am. Oil Chem. Soc. 76: 1073–1079. [Google Scholar]
  • Garber SB, Kingbury JS, Gray BL, Hoveyda AH. 2001. Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 123: 3186–3186. [CrossRef] [Google Scholar]
  • Gessler S, Randl S, Blechert S. 2000. Synthesis and metathesis reactions of a phosphine-free dihydroimidazole carbene ruthenium complex. Tetrahedron Lett. 41: 9973–9976. [Google Scholar]
  • Godard A, De Caro P, Thiebaud-Roux S, Vedrenne E, Mouloungui Z. 2013a. FR 2984887 A1 2984887 A1 20130628 (2013) and PCT Int. Appl., WO 2013093366 A1 20130627. [Google Scholar]
  • Godard A, De Caro P,Thiebaud-Roux S, Vedrenne E, Mouloungui Z. 2013b. New Environmentally Friendly Oxidative Scission of Oleic Acid into Azelaic Acid and Pelargonic Acid. J. Am. Oil Chem. Soc. 90: 133–140. [CrossRef] [Google Scholar]
  • Gulajski L, Sledz P, Lupa A, Grela K. 2008. Olefin metathesis in water using acoustic emulsification. Green Chem. 10: 271–274. [CrossRef] [Google Scholar]
  • Hansenne I. Sore G. 2005. PCT Int. Appl., WO 2005089707 A1 20050929. [Google Scholar]
  • Hoerr CW, Harwood HJ. 1952. The Solubilities of Oleic and Linoeic Acids in Common Organic Solvents. J. Phys. Chem. 56: 1068–1073. [CrossRef] [Google Scholar]
  • Jakobs RTM, Sijbesma RP. 2012. Mechanical Activation of a Latent Olefin Metathesis Catalyst and Persistence of its Active Species in ROMP. Organometallics 31: 2476–2481. [CrossRef] [Google Scholar]
  • Jenkins RW, Sargeant LA, Whiffin FM, et al. 2015. Cross-Metathesis of Microbial Oils for the Production of Advanced Biofuels and Chemicals. ACS Sustainable Chem. Eng. 3: 1526–1535. [CrossRef] [Google Scholar]
  • Kab H. 2000. (Very) High-oleic sunflower oils: production, markets, visions. In: Bonn, Germany: CTVO-NET-Final Conference-Proceedings, 20–21 June 2000, pp. 269–281. [Google Scholar]
  • Kingsbury JS, Harrity JPA, Bonitatebus PJ, Hoveyda Jr, AH. 1999. A Recyclable Ru-Based Metathesis Catalyst. J. Am. Chem. Soc. 121: 791–799. [CrossRef] [Google Scholar]
  • Kroha K. 2004. Industrial biotechnology provides opportunities for commercial production of new long-chain dibasic acids. Inform. 15: 568–571. [Google Scholar]
  • Levin E, Ivry E, Diesendruck CE, Lemcoff NG. 2015. Water in N-Heterocyclic Carbene-Assisted Catalysis. Chem. Rev. 115: 4607–4692. [CrossRef] [PubMed] [Google Scholar]
  • Le Ravalec V, Dupe A, Fischmeister C, Bruneau C. 2010. Improving Sustainability in Ene-Yne Cross-Metathesis for Transformation of Unsaturated Fatty Esters. ChemSusChem 3: 1291–1297. [CrossRef] [PubMed] [Google Scholar]
  • Love JA, Morgan JP, Trnka TM, Grubbs RH. 2002. A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile. Angew. Chem. Int. Ed. 41: 4035–4037. [CrossRef] [Google Scholar]
  • Meier MAR. 2000. Metathesis with Oleochemicals: New Approaches for the Utilization of Plant Oils as Renewable Resources in Polymer Science. Macromol. Chem. Phys. 210: 1073–1079 and references quoted therein. [CrossRef] [Google Scholar]
  • Miao X, Fischmeister C, Bruneau C, Dixneuf PH. 2008. Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds. ChemSusChem 1: 813–816. [CrossRef] [PubMed] [Google Scholar]
  • Montero de Espinosa L, Meier MAR. 2012. Olefin metathesis of renewable platform chemicals. Top. Organomet. Chem. 39: 1–44. [Google Scholar]
  • More AS, Maisonneuve L, Lebarbe T, Gadenne B, Alfos C, Cramail H. 2013. Vegetable-based building-blocks for the synthesis of thermoplastic renewable polyurethanes and polyesters. Eur. J. Lipid Sci. Technol. 115: 61–75. [CrossRef] [Google Scholar]
  • Ngo H, Foglia TA, U.S. (2009), US 7534917 B1 20090519. [Google Scholar]
  • Ngo HL, Jones K, Foglia TA. 2006. Metathesis of unsaturated fatty acids: Synthesis of long-chain unsaturated-α, ω-dicarboxylic acids. J. Am. Oil Chem. Soc. 83: 629–634. [Google Scholar]
  • Nicolaou KC, Bulger PG, Sarlah D. 2005. Metathesis Reactions in Total Synthesis. Ang. Chem. Int. Ed. 44: 4490–4527. [Google Scholar]
  • Nieschalg HJ, Wolff IA. 1971. Industrial Uses of High Erucic Oils. J. Am. Oil Chem. Soc. 48: 732–727. [Google Scholar]
  • Ohlmann DM, Tschauder N, Stockis JP, Goossen K, Dierker M, Goossen L. 2012. Isomerizing Olefin Metathesis as a Strategy To Access Defined Distributions of Unsaturated Compounds from Fatty Acids. J. Am. Chem. Soc. 134: 13716–13729. [CrossRef] [PubMed] [Google Scholar]
  • Oikawa T, Ookoshi T, Tanaka T, Yamamoto T, Onaka M. 2004. A new heterogeneous olefin metathesis catalyst composed of rhenium oxide and mesoporous alumina. Micropor. Mesopor. Mat. 74: 93–103. [CrossRef] [Google Scholar]
  • OLEOVISION project funded by FUI program (FUI-AAP7 No. 09.2.90.6103) and Région Midi-Pyrénées (CRMP No. 09011128), FEDER (No. 36520) and DGSI. [Google Scholar]
  • Ozturk BO, Topoglu B, Karabulut Sehitoglu S. 2015. Metathesis reactions of rapeseed oil-derived fatty acid methyl esters induced by monometallic and homobimetallic ruthenium complexes. Eur. J. Lipid Sci. Technol. 117: 200–208. [CrossRef] [Google Scholar]
  • Piermattei A, Karthikeyan S, Sijbesma RP. 2009. Activating catalysts with mechanical force. Nat. Chem. 1: 133–137. [CrossRef] [PubMed] [Google Scholar]
  • Sacco M, Charnay C, De Angelis F, et al. 2015. Microwave-ultrasound simultaneous irradiation: a hybrid technology applied to ring closing metathesis. RSC Adv. 5: 16878–16885. [CrossRef] [Google Scholar]
  • Sari O, Hamada M, Roy V, Nolan SP, Agrofoglio LA. 2013. The Preparation of Trisubstituted Alkenyl Nucleoside Phosphonates under Ultrasound-Assisted Olefin Cross-Metathesis. Org. Lett. 15: 4390–4393. [CrossRef] [PubMed] [Google Scholar]
  • Scholl M, Ding S, Lee CW, Grubbs RH. 1999. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1: 953–956. [CrossRef] [PubMed] [Google Scholar]
  • Tomasek J, Schatz J. 2013. Olefin metathesis in aqueous media. Green Chem. 15: 2317–2338. [CrossRef] [Google Scholar]
  • Van Dyne DL, Blase MG. 1990. Process design, economic feasibility, and market potential for nylon 1313 produced from erucic acid. Biotechnol. Prog. 6: 273–276. [CrossRef] [Google Scholar]
  • Van Veldhuizenn JJ, Garber SB, Kingsbury JS, Hoveyda AH. 2002. A Recyclable Chiral Ru Catalyst for Enantioselective Olefin Metathesis. Efficient Catalytic Asymmetric Ring-Opening/Cross Metathesis in Air. J. Am. Chem. Soc. 124: 4954–4955. [CrossRef] [PubMed] [Google Scholar]
  • Vilela C, Silvestre AJD, Meier MAR. 2012. Plant Oil-Based Long-Chain C26 Monomers and Their Polymers. Macromol. Chem. Phys. 213: 2220–2227. [CrossRef] [Google Scholar]
  • Vyshnavi Y, Prasad Rachapudi BN, Karuna MSL. 2013. Synthesis of industrially important platform chemicals via olefin metathesis of palash fatty acid methyl esters. Ind. Crops Prod. 50: 701–706. [CrossRef] [Google Scholar]
  • Wels B, Ridderikhoff H, Bergen-Brenkman TV, Liminto D. 2013. PCT Int. Appl., WO 2013140144 A1 20130926. [Google Scholar]
  • Wiechers JW, Rawlings AV, Garcia C, et al. 2005. A new mechanism of action for skin whitening agents: binding to the peroxisome proliferator-activated receptor. Int. J. Cosmetic Sci. 27: 123–132. [CrossRef] [Google Scholar]
  • Winkler M, Meier MAR. 2014. Olefin cross-metathesis as a valuable tool for the preparation of renewable polyesters and polyamides from unsaturated fatty acid esters and carbamates. Green Chem. 16: 3335–3340. [Google Scholar]
  • Yang Y, Lu W, Cai J, et al. 2011. Poly(oleic diacid-co-glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis. Macromolecules 44: 1977–1985. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.