Open Access
Issue |
OCL
Volume 23, Number 5, September-October 2016
|
|
---|---|---|
Article Number | D507 | |
Number of page(s) | 6 | |
Section | Dossier: New perspectives of European oleochemistry / Les nouvelles perspectives de l’oléochimie européenne | |
DOI | https://doi.org/10.1051/ocl/2016038 | |
Published online | 30 September 2016 |
- Behr A, Toepell S, Harmuth S. 2014. Cross-metathesis of methyl 10-undecenoate with dimethyl maleate: an efficient protocol with nearly quantitative yields. RSC Adv. 4: 16320–16326. [Google Scholar]
- Bernard D, Mahe Y. 2007. Eur. Pat. Appl. EP 1754513 A2 20070221. [Google Scholar]
- Caijo F, Tripoteau F, Bellec A, et al. 2013. Screening of a selection of commercially available homogeneous Ru-catalysts in valuable olefin metathesis transformations. Catal. Sci. Technol. 3: 429–435. [CrossRef] [Google Scholar]
- Carlsson AS. 2009. Plant oils as feedstock alternatives to petroleum – A short survey of potential oil crop platforms. Biochimie 91: 665–670. [CrossRef] [PubMed] [Google Scholar]
- Chatterjee AK, Choi TL, Sanders DP, Grubbs, RH. 2003. A General Model for Selectivity in Olefin Cross Metathesis. J. Am. Chem. Soc. 125: 11360–11370. [CrossRef] [PubMed] [Google Scholar]
- Chikkali S, Mecking S. 2012. Refining of Plant Oils to Chemicals by Olefin Metathesis. Ang. Chem. Int. Ed. 51: 5802–5808. [Google Scholar]
- Dufaure C, Leyris J, Rigal L, Mouloungui Z. 1999. A twin-screw extruder for oil extraction: I. Direct expression of oleic sunflower seeds. J. Am. Oil Chem. Soc. 76: 1073–1079. [Google Scholar]
- Garber SB, Kingbury JS, Gray BL, Hoveyda AH. 2001. Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 123: 3186–3186. [CrossRef] [Google Scholar]
- Gessler S, Randl S, Blechert S. 2000. Synthesis and metathesis reactions of a phosphine-free dihydroimidazole carbene ruthenium complex. Tetrahedron Lett. 41: 9973–9976. [Google Scholar]
- Godard A, De Caro P, Thiebaud-Roux S, Vedrenne E, Mouloungui Z. 2013a. FR 2984887 A1 2984887 A1 20130628 (2013) and PCT Int. Appl., WO 2013093366 A1 20130627. [Google Scholar]
- Godard A, De Caro P,Thiebaud-Roux S, Vedrenne E, Mouloungui Z. 2013b. New Environmentally Friendly Oxidative Scission of Oleic Acid into Azelaic Acid and Pelargonic Acid. J. Am. Oil Chem. Soc. 90: 133–140. [CrossRef] [Google Scholar]
- Gulajski L, Sledz P, Lupa A, Grela K. 2008. Olefin metathesis in water using acoustic emulsification. Green Chem. 10: 271–274. [CrossRef] [Google Scholar]
- Hansenne I. Sore G. 2005. PCT Int. Appl., WO 2005089707 A1 20050929. [Google Scholar]
- Hoerr CW, Harwood HJ. 1952. The Solubilities of Oleic and Linoeic Acids in Common Organic Solvents. J. Phys. Chem. 56: 1068–1073. [CrossRef] [Google Scholar]
- Jakobs RTM, Sijbesma RP. 2012. Mechanical Activation of a Latent Olefin Metathesis Catalyst and Persistence of its Active Species in ROMP. Organometallics 31: 2476–2481. [CrossRef] [Google Scholar]
- Jenkins RW, Sargeant LA, Whiffin FM, et al. 2015. Cross-Metathesis of Microbial Oils for the Production of Advanced Biofuels and Chemicals. ACS Sustainable Chem. Eng. 3: 1526–1535. [CrossRef] [Google Scholar]
- Kab H. 2000. (Very) High-oleic sunflower oils: production, markets, visions. In: Bonn, Germany: CTVO-NET-Final Conference-Proceedings, 20–21 June 2000, pp. 269–281. [Google Scholar]
- Kingsbury JS, Harrity JPA, Bonitatebus PJ, Hoveyda Jr, AH. 1999. A Recyclable Ru-Based Metathesis Catalyst. J. Am. Chem. Soc. 121: 791–799. [CrossRef] [Google Scholar]
- Kroha K. 2004. Industrial biotechnology provides opportunities for commercial production of new long-chain dibasic acids. Inform. 15: 568–571. [Google Scholar]
- Levin E, Ivry E, Diesendruck CE, Lemcoff NG. 2015. Water in N-Heterocyclic Carbene-Assisted Catalysis. Chem. Rev. 115: 4607–4692. [CrossRef] [PubMed] [Google Scholar]
- Le Ravalec V, Dupe A, Fischmeister C, Bruneau C. 2010. Improving Sustainability in Ene-Yne Cross-Metathesis for Transformation of Unsaturated Fatty Esters. ChemSusChem 3: 1291–1297. [CrossRef] [PubMed] [Google Scholar]
- Love JA, Morgan JP, Trnka TM, Grubbs RH. 2002. A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile. Angew. Chem. Int. Ed. 41: 4035–4037. [CrossRef] [Google Scholar]
- Meier MAR. 2000. Metathesis with Oleochemicals: New Approaches for the Utilization of Plant Oils as Renewable Resources in Polymer Science. Macromol. Chem. Phys. 210: 1073–1079 and references quoted therein. [CrossRef] [Google Scholar]
- Miao X, Fischmeister C, Bruneau C, Dixneuf PH. 2008. Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds. ChemSusChem 1: 813–816. [CrossRef] [PubMed] [Google Scholar]
- Montero de Espinosa L, Meier MAR. 2012. Olefin metathesis of renewable platform chemicals. Top. Organomet. Chem. 39: 1–44. [Google Scholar]
- More AS, Maisonneuve L, Lebarbe T, Gadenne B, Alfos C, Cramail H. 2013. Vegetable-based building-blocks for the synthesis of thermoplastic renewable polyurethanes and polyesters. Eur. J. Lipid Sci. Technol. 115: 61–75. [CrossRef] [Google Scholar]
- Ngo H, Foglia TA, U.S. (2009), US 7534917 B1 20090519. [Google Scholar]
- Ngo HL, Jones K, Foglia TA. 2006. Metathesis of unsaturated fatty acids: Synthesis of long-chain unsaturated-α, ω-dicarboxylic acids. J. Am. Oil Chem. Soc. 83: 629–634. [Google Scholar]
- Nicolaou KC, Bulger PG, Sarlah D. 2005. Metathesis Reactions in Total Synthesis. Ang. Chem. Int. Ed. 44: 4490–4527. [Google Scholar]
- Nieschalg HJ, Wolff IA. 1971. Industrial Uses of High Erucic Oils. J. Am. Oil Chem. Soc. 48: 732–727. [Google Scholar]
- Ohlmann DM, Tschauder N, Stockis JP, Goossen K, Dierker M, Goossen L. 2012. Isomerizing Olefin Metathesis as a Strategy To Access Defined Distributions of Unsaturated Compounds from Fatty Acids. J. Am. Chem. Soc. 134: 13716–13729. [CrossRef] [PubMed] [Google Scholar]
- Oikawa T, Ookoshi T, Tanaka T, Yamamoto T, Onaka M. 2004. A new heterogeneous olefin metathesis catalyst composed of rhenium oxide and mesoporous alumina. Micropor. Mesopor. Mat. 74: 93–103. [CrossRef] [Google Scholar]
- OLEOVISION project funded by FUI program (FUI-AAP7 No. 09.2.90.6103) and Région Midi-Pyrénées (CRMP No. 09011128), FEDER (No. 36520) and DGSI. [Google Scholar]
- Ozturk BO, Topoglu B, Karabulut Sehitoglu S. 2015. Metathesis reactions of rapeseed oil-derived fatty acid methyl esters induced by monometallic and homobimetallic ruthenium complexes. Eur. J. Lipid Sci. Technol. 117: 200–208. [CrossRef] [Google Scholar]
- Piermattei A, Karthikeyan S, Sijbesma RP. 2009. Activating catalysts with mechanical force. Nat. Chem. 1: 133–137. [CrossRef] [PubMed] [Google Scholar]
- Sacco M, Charnay C, De Angelis F, et al. 2015. Microwave-ultrasound simultaneous irradiation: a hybrid technology applied to ring closing metathesis. RSC Adv. 5: 16878–16885. [CrossRef] [Google Scholar]
- Sari O, Hamada M, Roy V, Nolan SP, Agrofoglio LA. 2013. The Preparation of Trisubstituted Alkenyl Nucleoside Phosphonates under Ultrasound-Assisted Olefin Cross-Metathesis. Org. Lett. 15: 4390–4393. [CrossRef] [PubMed] [Google Scholar]
- Scholl M, Ding S, Lee CW, Grubbs RH. 1999. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1: 953–956. [CrossRef] [PubMed] [Google Scholar]
- Tomasek J, Schatz J. 2013. Olefin metathesis in aqueous media. Green Chem. 15: 2317–2338. [CrossRef] [Google Scholar]
- Van Dyne DL, Blase MG. 1990. Process design, economic feasibility, and market potential for nylon 1313 produced from erucic acid. Biotechnol. Prog. 6: 273–276. [CrossRef] [Google Scholar]
- Van Veldhuizenn JJ, Garber SB, Kingsbury JS, Hoveyda AH. 2002. A Recyclable Chiral Ru Catalyst for Enantioselective Olefin Metathesis. Efficient Catalytic Asymmetric Ring-Opening/Cross Metathesis in Air. J. Am. Chem. Soc. 124: 4954–4955. [CrossRef] [PubMed] [Google Scholar]
- Vilela C, Silvestre AJD, Meier MAR. 2012. Plant Oil-Based Long-Chain C26 Monomers and Their Polymers. Macromol. Chem. Phys. 213: 2220–2227. [CrossRef] [Google Scholar]
- Vyshnavi Y, Prasad Rachapudi BN, Karuna MSL. 2013. Synthesis of industrially important platform chemicals via olefin metathesis of palash fatty acid methyl esters. Ind. Crops Prod. 50: 701–706. [CrossRef] [Google Scholar]
- Wels B, Ridderikhoff H, Bergen-Brenkman TV, Liminto D. 2013. PCT Int. Appl., WO 2013140144 A1 20130926. [Google Scholar]
- Wiechers JW, Rawlings AV, Garcia C, et al. 2005. A new mechanism of action for skin whitening agents: binding to the peroxisome proliferator-activated receptor. Int. J. Cosmetic Sci. 27: 123–132. [CrossRef] [Google Scholar]
- Winkler M, Meier MAR. 2014. Olefin cross-metathesis as a valuable tool for the preparation of renewable polyesters and polyamides from unsaturated fatty acid esters and carbamates. Green Chem. 16: 3335–3340. [Google Scholar]
- Yang Y, Lu W, Cai J, et al. 2011. Poly(oleic diacid-co-glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis. Macromolecules 44: 1977–1985. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.