Open Access
Volume 23, Numéro 1, January-February 2016
Numéro d'article D113
Nombre de pages 7
Section Dossier: Lipids and Brain / Lipides et cerveau
Publié en ligne 27 novembre 2015
  • Agbaga MP, Brush RS, Mandal MN, Henry K, Elliott MH, Anderson RE. 2008. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc. Natl. Acad. Sci. USA 105: 12843–12848. [Google Scholar]
  • Agbaga MP, Mandal MN, Anderson RE. 2010. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J. Lipid. Res. 51: 1624–1642. [Google Scholar]
  • Agbaga MP, Tam BM, Wong JS, Yang LL, Anderson RE, Moritz OL. 2014. Mutant ELOVL4 that causes autosomal dominant stargardt-3 macular dystrophy is misrouted to rod outer segment disks. Invest. Ophthalmol. Vis. Sci. 55: 3669–3680. [CrossRef] [PubMed] [Google Scholar]
  • Aveldano MI. 1987. A novel group of very long chain polyenoic fatty acids in dipolyunsaturated phosphatidylcholines from vertebrate retina. J. Biol. Chem. 262: 1172–1179. [PubMed] [Google Scholar]
  • Barabas P, Liu A, Xing W, et al. 2013. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc. Natl. Acad. Sci. USA 110: 5181–5186. [CrossRef] [Google Scholar]
  • Bennett LD, Hopiavuori BR, Brush RS, et al. 2014. Examination of VLC-PUFA-deficient photoreceptor terminals. Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.14-13997 [Google Scholar]
  • Brush RS, Tran JT, Henry KR, McClellan ME, Elliott MH, Mandal MN. 2010. Retinal sphingolipids and their very-long-chain fatty acid-containing species. Invest. Ophthalmol. Vis. Sci. 51: 4422–4431. [CrossRef] [PubMed] [Google Scholar]
  • DeLorenzo RJ, Freedman SD. 1978. Calcium dependent neurotransmitter release and protein phosphorylation in synaptic vesicles. Biochem. Biophys. Res. Commun. 80: 183–192. [CrossRef] [PubMed] [Google Scholar]
  • Donoso LA, Frost AT, Stone EM, et al. 2001. Autosomal dominant Stargardt-like macular dystrophy: founder effect and reassessment of genetic heterogeneity. Arch. Ophthalmol. 119: 564–570. [CrossRef] [PubMed] [Google Scholar]
  • Edwards AO, Donoso LA, Ritter R, 3rd. 2001. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest. Ophthalmol. Vis. Sci. 42: 2652–2663. [PubMed] [Google Scholar]
  • Griesinger, IB, Sieving, PA, and Ayyagari, R. 2000. Autosomal dominant macular atrophy at 6q14 excludes CORD7 and MCDR1/PBCRA loci. Invest. Ophthalmol. Vis. Sci. 41: 248–255. [PubMed] [Google Scholar]
  • Harkewicz R, Du H, Tong Z, et al. 2012. Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function. J. Biol. Chem. 287: 11469–11480. [Google Scholar]
  • Katz B, Miledi R. 1967. The timing of calcium action during neuromuscular transmission. J. Physiol. 189: 535–544. [CrossRef] [PubMed] [Google Scholar]
  • Kniazeva M, Chiang MF, Morgan B, Anduze AL, Zack DJ, Han M, Zhang K. 1999. A new locus for autosomal dominant stargardt-like disease maps to chromosome 4. Am. J. Hum. Genet. 64: 1394–1399. [Google Scholar]
  • Logan S, Agbaga MP, Chan MD, et al. 2013. Deciphering mutant ELOVL4 activity in autosomal-dominant Stargardt macular dystrophy. Proc. Natl. Acad. Sci. USA 110: 5446–5451. [CrossRef] [Google Scholar]
  • Logan S, Agbaga MP, Chan MD, Brush RS, Anderson RE. 2014. Endoplasmic reticulum microenvironment and conserved histidines govern ELOVL4 fatty acid elongase activity. J. Lipid. Res. 55: 698–708. [CrossRef] [PubMed] [Google Scholar]
  • Poulos A. 1995. Very long chain fatty acids in higher animals–a review. Lipids 30: 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Poulos A, Johnson DW, Beckman K, White IG, Easton C. 1987. Occurrence of unusual molecular species of sphingomyelin containing 28-34-carbon polyenoic fatty acids in ram spermatozoa. Biochem. J. 248: 961–964. [CrossRef] [PubMed] [Google Scholar]
  • Redburn DA, Thomas TN. 1979. Isolation of synaptosomal fractions from rabbit retina. J. Neurosci. Methods 1: 235–242. [CrossRef] [PubMed] [Google Scholar]
  • Van Hook MJ, Thoreson WB. 2013. Simultaneous whole cell recordings from photoreceptors and second-order neurons in an amphibian retinal slice preparation. J. Vis. Exp. e50007. [Google Scholar]
  • Vasireddy V, Uchida Y, Salem N, Jr, et al. 2007. Loss of functional ELOVL4 depletes very long-chain fatty acids (>or = C28) and the unique omega-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 16: 471–482. [CrossRef] [PubMed] [Google Scholar]
  • Wachtmeister L. 1998. Oscillatory potentials in the retina: what do they reveal. Prog. Retin Eye Res. 17: 485–521. [Google Scholar]
  • Zhang K, Kniazeva M, Han M, et al. 2001. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 27: 89–93. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.