Open Access
Review
Issue
OCL
Volume 23, Number 1, January-February 2016
Article Number D113
Number of page(s) 7
Section Dossier: Lipids and Brain / Lipides et cerveau
DOI https://doi.org/10.1051/ocl/2015056
Published online 27 November 2015
  • Agbaga MP, Brush RS, Mandal MN, Henry K, Elliott MH, Anderson RE. 2008. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc. Natl. Acad. Sci. USA 105: 12843–12848. [CrossRef] [PubMed] [Google Scholar]
  • Agbaga MP, Mandal MN, Anderson RE. 2010. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J. Lipid. Res. 51: 1624–1642. [CrossRef] [PubMed] [Google Scholar]
  • Agbaga MP, Tam BM, Wong JS, Yang LL, Anderson RE, Moritz OL. 2014. Mutant ELOVL4 that causes autosomal dominant stargardt-3 macular dystrophy is misrouted to rod outer segment disks. Invest. Ophthalmol. Vis. Sci. 55: 3669–3680. [CrossRef] [PubMed] [Google Scholar]
  • Aveldano MI. 1987. A novel group of very long chain polyenoic fatty acids in dipolyunsaturated phosphatidylcholines from vertebrate retina. J. Biol. Chem. 262: 1172–1179. [PubMed] [Google Scholar]
  • Barabas P, Liu A, Xing W, et al. 2013. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc. Natl. Acad. Sci. USA 110: 5181–5186. [CrossRef] [Google Scholar]
  • Bennett LD, Hopiavuori BR, Brush RS, et al. 2014. Examination of VLC-PUFA-deficient photoreceptor terminals. Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.14-13997 [Google Scholar]
  • Brush RS, Tran JT, Henry KR, McClellan ME, Elliott MH, Mandal MN. 2010. Retinal sphingolipids and their very-long-chain fatty acid-containing species. Invest. Ophthalmol. Vis. Sci. 51: 4422–4431. [CrossRef] [PubMed] [Google Scholar]
  • DeLorenzo RJ, Freedman SD. 1978. Calcium dependent neurotransmitter release and protein phosphorylation in synaptic vesicles. Biochem. Biophys. Res. Commun. 80: 183–192. [CrossRef] [PubMed] [Google Scholar]
  • Donoso LA, Frost AT, Stone EM, et al. 2001. Autosomal dominant Stargardt-like macular dystrophy: founder effect and reassessment of genetic heterogeneity. Arch. Ophthalmol. 119: 564–570. [CrossRef] [PubMed] [Google Scholar]
  • Edwards AO, Donoso LA, Ritter R, 3rd. 2001. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest. Ophthalmol. Vis. Sci. 42: 2652–2663. [PubMed] [Google Scholar]
  • Griesinger, IB, Sieving, PA, and Ayyagari, R. 2000. Autosomal dominant macular atrophy at 6q14 excludes CORD7 and MCDR1/PBCRA loci. Invest. Ophthalmol. Vis. Sci. 41: 248–255. [PubMed] [Google Scholar]
  • Harkewicz R, Du H, Tong Z, et al. 2012. Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function. J. Biol. Chem. 287: 11469–11480. [CrossRef] [PubMed] [Google Scholar]
  • Katz B, Miledi R. 1967. The timing of calcium action during neuromuscular transmission. J. Physiol. 189: 535–544. [CrossRef] [PubMed] [Google Scholar]
  • Kniazeva M, Chiang MF, Morgan B, Anduze AL, Zack DJ, Han M, Zhang K. 1999. A new locus for autosomal dominant stargardt-like disease maps to chromosome 4. Am. J. Hum. Genet. 64: 1394–1399. [CrossRef] [PubMed] [Google Scholar]
  • Logan S, Agbaga MP, Chan MD, et al. 2013. Deciphering mutant ELOVL4 activity in autosomal-dominant Stargardt macular dystrophy. Proc. Natl. Acad. Sci. USA 110: 5446–5451. [CrossRef] [Google Scholar]
  • Logan S, Agbaga MP, Chan MD, Brush RS, Anderson RE. 2014. Endoplasmic reticulum microenvironment and conserved histidines govern ELOVL4 fatty acid elongase activity. J. Lipid. Res. 55: 698–708. [CrossRef] [PubMed] [Google Scholar]
  • Poulos A. 1995. Very long chain fatty acids in higher animals–a review. Lipids 30: 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Poulos A, Johnson DW, Beckman K, White IG, Easton C. 1987. Occurrence of unusual molecular species of sphingomyelin containing 28-34-carbon polyenoic fatty acids in ram spermatozoa. Biochem. J. 248: 961–964. [CrossRef] [PubMed] [Google Scholar]
  • Redburn DA, Thomas TN. 1979. Isolation of synaptosomal fractions from rabbit retina. J. Neurosci. Methods 1: 235–242. [CrossRef] [PubMed] [Google Scholar]
  • Van Hook MJ, Thoreson WB. 2013. Simultaneous whole cell recordings from photoreceptors and second-order neurons in an amphibian retinal slice preparation. J. Vis. Exp. e50007. [Google Scholar]
  • Vasireddy V, Uchida Y, Salem N, Jr, et al. 2007. Loss of functional ELOVL4 depletes very long-chain fatty acids (>or = C28) and the unique omega-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 16: 471–482. [CrossRef] [PubMed] [Google Scholar]
  • Wachtmeister L. 1998. Oscillatory potentials in the retina: what do they reveal. Prog. Retin Eye Res. 17: 485–521. [CrossRef] [PubMed] [Google Scholar]
  • Zhang K, Kniazeva M, Han M, et al. 2001. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 27: 89–93. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.