Open Access
Numéro
OCL
Volume 21, Numéro 1, January-February 2014
Numéro d'article D103
Nombre de pages 8
Section Dossier: Rapeseed – Tremendous potential for added value generation? / Colza : haut potentiel de valeur ajoutée ?
DOI https://doi.org/10.1051/ocl/2013049
Publié en ligne 22 janvier 2014
  • Artz WE, Swanson BG, Sendzicki J, Rasyid A, Birch REW. 1986. ACS Symposium Series 312, RL Ory, Ed. Washington: American Chemical Society, pp. 126–137. [Google Scholar]
  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D. 2005. Formation of a complex pattern of sinapate esters in Brassica napus seeds catalyzed by enzymes of serine carboxypeptidase-like acyltransferase family. Phytochem. 66: 1334–1345. [CrossRef] [Google Scholar]
  • Eggers R, Ambrogi A. 2003. Kurzzeitige Hochtemperaturbehandlung zur Konditionierung bei der Verarbeitung von Ölsaaten. FEI-Kurzbericht. AiF 12781 N. [Google Scholar]
  • Eggers R. 2006. Raffination begleitkomponentenreicher Rapsöle. FEI-Kurzbericht. AiF 13832 N. [Google Scholar]
  • Eggers R, Schwarz K. 2010. Polyphenolangereichertes Deodestillat zur Erhöhung der Oxidations-stabilität von speiseölhaltigen Nahrungsmitteln. FEI-Kurzbericht. AiF 15216 N. [Google Scholar]
  • Fenwick RG, Hoggan SA. 1976. The tannin content of rapeseed meal. Br. Poult. Sci. 17: 59–62. [CrossRef] [Google Scholar]
  • Fenwick GR, Curl CL, Butler EJ, Greenwood NM, Pearson AW. 1984. Rapeseed meal and egg taint: effects of low glucosinolate Brassica napus meal, dehulled meal and hulls and of neomycin. J. Sci. Food Agric. 35: 749–756. [CrossRef] [Google Scholar]
  • Koski A, Pekkarinen S, Hopia A, Wähälä K, Heinonen M. 2003. Processing of rapeseed oil: Effects on sinapinic acid derivative content and oxidative stability. Eur. Food Res. Technol. 217: 110−114. [CrossRef] [Google Scholar]
  • Krygier K, Sosulski F, Hogge L. 1982. Free, esterified and insoluble phenolic acids. II. Composition of phenolic acids in rapeseed flour and hulls. J. Agric. Food Chem. 30: 334–336. [CrossRef] [Google Scholar]
  • Kuwahara H, Kanazanwa A, Wakamatu D, Morimura S, Kida K, Akaike T, Maeda H. 2004. Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (Canolol) isolated from canola oil. J Agric Food Chem 52: 4380–4387. [CrossRef] [PubMed] [Google Scholar]
  • Matthäus B. 1998. Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Fett/Lipid 100: 295–301. [CrossRef] [Google Scholar]
  • Matthäus B, Pudel F, Leidt K-H. 2012. Canolol formation during fluidized bed treatment of rapeseed meal, 10th Euro Fed Lipid Congress, 23-26 September 2012, Cracow, Poland. [Google Scholar]
  • Matthäus B, Pudel F, Leidt K-H, Habicht V, Quirin K-W, Cawelius A. 2013. Fluidized bed treatment of rapeseed meal as possibility for the production of canolol, 4th Leipzig Symposium “Rapeseed – Tremendous Potential for added Value Generation?” 20–21 March 2013. Leipzig, Germany. [Google Scholar]
  • Moltke Sørensen AD, Friel J, Winkler-Moser J K, Jacobsen C, Huidrom D, Reddy N, Thiyam-Holländer U. 2013. Impact of endogenous canola phenolics on the oxidative stability of oil-in-water emulsions. Eur. J. Lipid Sci. Technol. 115: 501–512. [CrossRef] [Google Scholar]
  • Müller MM, Ryl EB, Fenton T, Clandinin DR. 1978. Cultivar and growing location differences on the sinapine content of rapeseed. Can. J. Anim. Sci. 58: 579–583. [CrossRef] [Google Scholar]
  • Naczk M, Amarowicz R, Sullivan A, Shahidi F. 1998. Developments on polyphenolics of rapeseed/canola: A Review. Food Chem. 62: 489–502. [CrossRef] [Google Scholar]
  • Nowak H, Kujawa K, Zadernowski R, Roczniak B, Kozlowska H. 1992. Antioxidative and bactericidal properties of phenolic compounds in rapeseeds. Fat Sci. Technol. 94: 149–152. [Google Scholar]
  • Pudel F, Habicht V, Matthäus B, Quirin K-W, Cawelius A. 2013. Production of canolol by fluidized bed roasting and CO2 extraction of rapeseed meal. 104th AOCS Annual Meeting & Expo, April 28–May 1, 2013, Montréal, Québec, Canada. [Google Scholar]
  • Qiao HY, Dahiya JP, Classen HL. 2008. Nutritional and physological effects of dietary sinapic acid (4-hydroxy-3,5-dimethoxy-cinammic acid) in broiler chickens and its metabolism in the digestive tract. Poultry Sci. 87: 719–726. [CrossRef] [Google Scholar]
  • Spielmeyer A, Wagner A, Jahreis G. 2009. Influence of thermal treatment of rapeseed on the canolol content. Food Chem. 112: 944–948. [CrossRef] [Google Scholar]
  • Thiyam U, Stöckmann H, zum Felde T, Schwarz K. 2006. Antioxidative effect of the main sinapic acid derivates from rapeseed rapeseed and mustard oil by-products. Eur. J. Lipid Sci. Technol. 108: 238–248. [CrossRef] [Google Scholar]
  • Wakamatsu D, Morimura S, Sawa T, Kida K, Nakai C, Maeda H. 2005. Isolation, identification, and structure of a potent alkyl-peroxyl radical scavenger in crude canola oil, canolol. Biosci. Biotechnol. Biochem. 69: 1568–1574. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.