Open Access
Issue
OCL
Volume 21, Number 1, January-February 2014
Article Number D103
Number of page(s) 8
Section Dossier: Rapeseed – Tremendous potential for added value generation? / Colza : haut potentiel de valeur ajoutée ?
DOI https://doi.org/10.1051/ocl/2013049
Published online 22 January 2014
  • Artz WE, Swanson BG, Sendzicki J, Rasyid A, Birch REW. 1986. ACS Symposium Series 312, RL Ory, Ed. Washington: American Chemical Society, pp. 126–137. [Google Scholar]
  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D. 2005. Formation of a complex pattern of sinapate esters in Brassica napus seeds catalyzed by enzymes of serine carboxypeptidase-like acyltransferase family. Phytochem. 66: 1334–1345. [Google Scholar]
  • Eggers R, Ambrogi A. 2003. Kurzzeitige Hochtemperaturbehandlung zur Konditionierung bei der Verarbeitung von Ölsaaten. FEI-Kurzbericht. AiF 12781 N. [Google Scholar]
  • Eggers R. 2006. Raffination begleitkomponentenreicher Rapsöle. FEI-Kurzbericht. AiF 13832 N. [Google Scholar]
  • Eggers R, Schwarz K. 2010. Polyphenolangereichertes Deodestillat zur Erhöhung der Oxidations-stabilität von speiseölhaltigen Nahrungsmitteln. FEI-Kurzbericht. AiF 15216 N. [Google Scholar]
  • Fenwick RG, Hoggan SA. 1976. The tannin content of rapeseed meal. Br. Poult. Sci. 17: 59–62. [CrossRef] [Google Scholar]
  • Fenwick GR, Curl CL, Butler EJ, Greenwood NM, Pearson AW. 1984. Rapeseed meal and egg taint: effects of low glucosinolate Brassica napus meal, dehulled meal and hulls and of neomycin. J. Sci. Food Agric. 35: 749–756. [CrossRef] [Google Scholar]
  • Koski A, Pekkarinen S, Hopia A, Wähälä K, Heinonen M. 2003. Processing of rapeseed oil: Effects on sinapinic acid derivative content and oxidative stability. Eur. Food Res. Technol. 217: 110−114. [Google Scholar]
  • Krygier K, Sosulski F, Hogge L. 1982. Free, esterified and insoluble phenolic acids. II. Composition of phenolic acids in rapeseed flour and hulls. J. Agric. Food Chem. 30: 334–336. [CrossRef] [Google Scholar]
  • Kuwahara H, Kanazanwa A, Wakamatu D, Morimura S, Kida K, Akaike T, Maeda H. 2004. Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (Canolol) isolated from canola oil. J Agric Food Chem 52: 4380–4387. [CrossRef] [PubMed] [Google Scholar]
  • Matthäus B. 1998. Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Fett/Lipid 100: 295–301. [Google Scholar]
  • Matthäus B, Pudel F, Leidt K-H. 2012. Canolol formation during fluidized bed treatment of rapeseed meal, 10th Euro Fed Lipid Congress, 23-26 September 2012, Cracow, Poland. [Google Scholar]
  • Matthäus B, Pudel F, Leidt K-H, Habicht V, Quirin K-W, Cawelius A. 2013. Fluidized bed treatment of rapeseed meal as possibility for the production of canolol, 4th Leipzig Symposium “Rapeseed – Tremendous Potential for added Value Generation?” 20–21 March 2013. Leipzig, Germany. [Google Scholar]
  • Moltke Sørensen AD, Friel J, Winkler-Moser J K, Jacobsen C, Huidrom D, Reddy N, Thiyam-Holländer U. 2013. Impact of endogenous canola phenolics on the oxidative stability of oil-in-water emulsions. Eur. J. Lipid Sci. Technol. 115: 501–512. [CrossRef] [Google Scholar]
  • Müller MM, Ryl EB, Fenton T, Clandinin DR. 1978. Cultivar and growing location differences on the sinapine content of rapeseed. Can. J. Anim. Sci. 58: 579–583. [CrossRef] [Google Scholar]
  • Naczk M, Amarowicz R, Sullivan A, Shahidi F. 1998. Developments on polyphenolics of rapeseed/canola: A Review. Food Chem. 62: 489–502. [CrossRef] [Google Scholar]
  • Nowak H, Kujawa K, Zadernowski R, Roczniak B, Kozlowska H. 1992. Antioxidative and bactericidal properties of phenolic compounds in rapeseeds. Fat Sci. Technol. 94: 149–152. [Google Scholar]
  • Pudel F, Habicht V, Matthäus B, Quirin K-W, Cawelius A. 2013. Production of canolol by fluidized bed roasting and CO2 extraction of rapeseed meal. 104th AOCS Annual Meeting & Expo, April 28–May 1, 2013, Montréal, Québec, Canada. [Google Scholar]
  • Qiao HY, Dahiya JP, Classen HL. 2008. Nutritional and physological effects of dietary sinapic acid (4-hydroxy-3,5-dimethoxy-cinammic acid) in broiler chickens and its metabolism in the digestive tract. Poultry Sci. 87: 719–726. [CrossRef] [Google Scholar]
  • Spielmeyer A, Wagner A, Jahreis G. 2009. Influence of thermal treatment of rapeseed on the canolol content. Food Chem. 112: 944–948. [CrossRef] [Google Scholar]
  • Thiyam U, Stöckmann H, zum Felde T, Schwarz K. 2006. Antioxidative effect of the main sinapic acid derivates from rapeseed rapeseed and mustard oil by-products. Eur. J. Lipid Sci. Technol. 108: 238–248. [CrossRef] [Google Scholar]
  • Wakamatsu D, Morimura S, Sawa T, Kida K, Nakai C, Maeda H. 2005. Isolation, identification, and structure of a potent alkyl-peroxyl radical scavenger in crude canola oil, canolol. Biosci. Biotechnol. Biochem. 69: 1568–1574. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.