Open Access
Volume 20, Numéro 1, January-February 2013
Page(s) 16 - 22
Section Dossier : Chimie du végétal et lipochimie
Publié en ligne 15 janvier 2013
  • Benyahya S, Desroches M, Auvergne R, Carlotti S, Caillol S, Boutevin B. Synthesis of glycerine carbonate-based intermediates using thiol-ene chemistry and isocyanate free polyhydroxyurethanes therefrom. Polym Chem 2011; 2: 2661–2667. [CrossRef] [Google Scholar]
  • Caillol S, Desroches M, Carlotti S, Auvergne R, Boutevin B. Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling. Green Mater 2012; DOI: [10.1680/gmat.12.00001]. [Google Scholar]
  • Caillol S, Desroches M, Boutevin G, Loubat C, Auvergne R, Boutevin B. Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. Eur J Lipid Sci Technol 2012; DOI: [10.1002/ejlt.201200199]. [Google Scholar]
  • Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev 2007; 107: 2411–2502. [CrossRef] [PubMed] [Google Scholar]
  • Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B. Synthesis of biobased polyols by thiol-ene coupling from vegetable oils. Macromolecules 2011; 44: 2489–2500. [CrossRef] [Google Scholar]
  • Desroches M, Caillol S, Auvergne R, Boutevin B. Synthesis of pseudo-telechelic diols by trans-esterification and thiol-ene coupling. Eur J Lipid Sci Technol 2012; 114: 84–91. [CrossRef] [Google Scholar]
  • Desroches M, Caillol S, Auvergne R, Boutevin B, David G. Biobased cross-linked polyurethanes obtained from ester/amide pseudo-diols of fatty acid derivatives synthesized by thiol-ene coupling. Polym Chem 2012; 2: 450–457. [CrossRef] [Google Scholar]
  • Dubois JL, Gillet JP. Coproduction of cyclic carbonates and of nitriles and/or of fatty amines. Arkema Patent WO2008145941A2, 2008. [Google Scholar]
  • Eissen M, Metzger J, Schmidt E, Schneidewind U. 10 year after Rio – Concepts on the contribution of chemistry to a sustainable development. Angew Chem Int Ed 2002; 41: 414–436. [CrossRef] [Google Scholar]
  • Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP. Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog Polym Sci 2010; 35: 578–622. [CrossRef] [Google Scholar]
  • Fomina EV. Synthesis and properties of new polyfunctional curing agents for epoxy resins based on dimerized fatty acids. Polym Sci 2010; 3: 87–91. [Google Scholar]
  • Gunstone FD. Chemical reactions of fatty acids with special reference to the carboxyl group. Eur J Lipid Sci Technol 2001; 103: 307–314. [CrossRef] [Google Scholar]
  • Guo A, Javni I, Petrovic Z. Rigid polyurethane foams based on soybean oil. J. Appl. Polym. Sci. 2000; 77 : 467–473. [CrossRef] [Google Scholar]
  • Heba F, Mouzali M, Abadie JM. Effect of the crosslinking degree on curing kinetics of an epoxy-acid copolymer system. J Appl Polym Sci 2003; 90: 2834–2839. [CrossRef] [Google Scholar]
  • Hiroko W, Shinetsu F, Taro F, Akinori M, Ari K, Yumiko O. Adsorbent and method of manufacturing the same. Toshiba. Patent JP2009034634, 2009. [Google Scholar]
  • Hirose S, Hatakeyama T, Hatakeyama H. Synthesis and thermal properties of epoxy resins from ester-carboxylic acid derivative of alcoholysis lignin. Macromolecular Symp 2003; 197: 157–169. [CrossRef] [Google Scholar]
  • Li Y, Xiao F, Moon KS, Wong CP. Novel curing agent for lead-free electronics: amino acids. J Polym Sci Part A: Polym Chem 2006; 44: 1020–1027. [CrossRef] [Google Scholar]
  • Miao S, Zhang S, Su Z, Wang P. A novel vegetable oil-lactate hybrid monomer for synthesis of high-Tg polyurethanes. J Polym Sci Part A: Polym Chem 2010; 48: 243–250. [CrossRef] [Google Scholar]
  • Mikheev W, Svetlakov NV, Sysoev VA and Gumerova RK, Zh Org Khim 1983; 19: 498–501. [Google Scholar]
  • Pechar TW, Sohn S, Wilkes GL, et al. Characterization and comparison of polyurethane networks prepared using soybean-based polyols with varying hydroxyl content and their blends with petroleum-based polyols. J Appl Polym Sci 2006; 101: 1432–1443. [CrossRef] [Google Scholar]
  • Petrovic ZS, Guo A, Zhang W. Structure and properties of polyurethanes based on halogenated and nonhalogenated soy-polyols. J Appl Polym Sci 2000; 38: 4062–4069. [CrossRef] [Google Scholar]
  • Petrovic ZS, Zhang W, Javni I. Structure and Properties of Polyurethanes Prepared from Triglyceride Polyols by Ozonolysis. Biomarcomolecules 2005; 6: 713–719. [CrossRef] [PubMed] [Google Scholar]
  • Petrović ZS, Cvetković I, Hong D, et al. Polyester polyols and polyurethanes from ricinoleic acid. J Appl Polym Sci 2008; 108: 1184–1190. [CrossRef] [Google Scholar]
  • Petrovic ZS, Guo A, Javni I, Cvetkovic I, Hong DP. Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polym Int 2008; 57: 275–281. [CrossRef] [Google Scholar]
  • Prudhon P. Industrie chimique et le grenelle de l’environnement. Union des industries chimiques 2010. [Google Scholar]
  • Shen L, Haufe J, Patel MK. Product overview and market projection of emerging biobased plastics, Utrecht University commissioned by European Polysaccharide network of excellence and European bioplastics 2009. [Google Scholar]
  • Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas JP, Robin JJ. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. J Polym Sci Part A: Polym Chem 2011; 49: 2434–2444. [CrossRef] [Google Scholar]
  • Tamami B, Sohn S, Wilkes GL. Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J Appl Polym Sci 2004; 92: 883–891. [CrossRef] [Google Scholar]
  • Tomita H, Sanda F, Endo T. Polyaddition of bis(seven-membered cyclic carbonate) with diamines: A novel and efficient synthetic method for polyhydroxyurethanes. J Polym Sci Part A: Polym Chem 2001; 39: 4091–4100. [CrossRef] [Google Scholar]
  • Wang H, Wang H, Zhou G. Synthesis of rosin-based imidoamine-type curing agents and curing behavior with epoxy resin. Polym Int 2011; 60: 557–563. [CrossRef] [Google Scholar]
  • Whelan Jr JM, Cotter RJ. Multiple cyclic carbonate polymers. US Paten t3072613, 1963. [Google Scholar]
  • Xu Y, Petrovic Z, Das S, Wilkes GL. Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer 2008; 49 : 4248–4258. [CrossRef] [Google Scholar]
  • Yeganeh H, Hojati-Talemi P. Polym. Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol). Degrad Stab 2007 ; 92: 480–489. [CrossRef] [Google Scholar]
  • Zao HP, Zhang JF, Sun XS, Hua DH. Syntheses and properties of cross-linked polymers from functionalized triglycerides. J Appl Polym Sci 2008; 110: 647–656. [CrossRef] [Google Scholar]
  • Zanetti-Ramos BG, Lemos-Senna E, Soldi V, Borsali R, Cloutet E, Cramail H. Polyurethane nanoparticles from a natural polyol via miniemulsion technique. Polymer 2006; 47: 8080–8087. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.