Open Access
Issue
OCL
Volume 20, Number 1, January-February 2013
Page(s) 16 - 22
Section Dossier : Chimie du végétal et lipochimie
DOI https://doi.org/10.1051/ocl.2012.0489
Published online 15 January 2013
  • Benyahya S, Desroches M, Auvergne R, Carlotti S, Caillol S, Boutevin B. Synthesis of glycerine carbonate-based intermediates using thiol-ene chemistry and isocyanate free polyhydroxyurethanes therefrom. Polym Chem 2011; 2: 2661–2667. [CrossRef] [Google Scholar]
  • Caillol S, Desroches M, Carlotti S, Auvergne R, Boutevin B. Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling. Green Mater 2012; DOI: [10.1680/gmat.12.00001]. [Google Scholar]
  • Caillol S, Desroches M, Boutevin G, Loubat C, Auvergne R, Boutevin B. Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. Eur J Lipid Sci Technol 2012; DOI: [10.1002/ejlt.201200199]. [Google Scholar]
  • Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev 2007; 107: 2411–2502. [CrossRef] [PubMed] [Google Scholar]
  • Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B. Synthesis of biobased polyols by thiol-ene coupling from vegetable oils. Macromolecules 2011; 44: 2489–2500. [CrossRef] [Google Scholar]
  • Desroches M, Caillol S, Auvergne R, Boutevin B. Synthesis of pseudo-telechelic diols by trans-esterification and thiol-ene coupling. Eur J Lipid Sci Technol 2012; 114: 84–91. [CrossRef] [Google Scholar]
  • Desroches M, Caillol S, Auvergne R, Boutevin B, David G. Biobased cross-linked polyurethanes obtained from ester/amide pseudo-diols of fatty acid derivatives synthesized by thiol-ene coupling. Polym Chem 2012; 2: 450–457. [CrossRef] [Google Scholar]
  • Dubois JL, Gillet JP. Coproduction of cyclic carbonates and of nitriles and/or of fatty amines. Arkema Patent WO2008145941A2, 2008. [Google Scholar]
  • Eissen M, Metzger J, Schmidt E, Schneidewind U. 10 year after Rio – Concepts on the contribution of chemistry to a sustainable development. Angew Chem Int Ed 2002; 41: 414–436. [CrossRef] [Google Scholar]
  • Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP. Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog Polym Sci 2010; 35: 578–622. [CrossRef] [Google Scholar]
  • Fomina EV. Synthesis and properties of new polyfunctional curing agents for epoxy resins based on dimerized fatty acids. Polym Sci 2010; 3: 87–91. [Google Scholar]
  • Gunstone FD. Chemical reactions of fatty acids with special reference to the carboxyl group. Eur J Lipid Sci Technol 2001; 103: 307–314. [CrossRef] [Google Scholar]
  • Guo A, Javni I, Petrovic Z. Rigid polyurethane foams based on soybean oil. J. Appl. Polym. Sci. 2000; 77 : 467–473. [CrossRef] [Google Scholar]
  • Heba F, Mouzali M, Abadie JM. Effect of the crosslinking degree on curing kinetics of an epoxy-acid copolymer system. J Appl Polym Sci 2003; 90: 2834–2839. [CrossRef] [Google Scholar]
  • Hiroko W, Shinetsu F, Taro F, Akinori M, Ari K, Yumiko O. Adsorbent and method of manufacturing the same. Toshiba. Patent JP2009034634, 2009. [Google Scholar]
  • Hirose S, Hatakeyama T, Hatakeyama H. Synthesis and thermal properties of epoxy resins from ester-carboxylic acid derivative of alcoholysis lignin. Macromolecular Symp 2003; 197: 157–169. [CrossRef] [Google Scholar]
  • Li Y, Xiao F, Moon KS, Wong CP. Novel curing agent for lead-free electronics: amino acids. J Polym Sci Part A: Polym Chem 2006; 44: 1020–1027. [CrossRef] [Google Scholar]
  • Miao S, Zhang S, Su Z, Wang P. A novel vegetable oil-lactate hybrid monomer for synthesis of high-Tg polyurethanes. J Polym Sci Part A: Polym Chem 2010; 48: 243–250. [CrossRef] [Google Scholar]
  • Mikheev W, Svetlakov NV, Sysoev VA and Gumerova RK, Zh Org Khim 1983; 19: 498–501. [Google Scholar]
  • Pechar TW, Sohn S, Wilkes GL, et al. Characterization and comparison of polyurethane networks prepared using soybean-based polyols with varying hydroxyl content and their blends with petroleum-based polyols. J Appl Polym Sci 2006; 101: 1432–1443. [CrossRef] [Google Scholar]
  • Petrovic ZS, Guo A, Zhang W. Structure and properties of polyurethanes based on halogenated and nonhalogenated soy-polyols. J Appl Polym Sci 2000; 38: 4062–4069. [CrossRef] [Google Scholar]
  • Petrovic ZS, Zhang W, Javni I. Structure and Properties of Polyurethanes Prepared from Triglyceride Polyols by Ozonolysis. Biomarcomolecules 2005; 6: 713–719. [CrossRef] [PubMed] [Google Scholar]
  • Petrović ZS, Cvetković I, Hong D, et al. Polyester polyols and polyurethanes from ricinoleic acid. J Appl Polym Sci 2008; 108: 1184–1190. [CrossRef] [Google Scholar]
  • Petrovic ZS, Guo A, Javni I, Cvetkovic I, Hong DP. Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polym Int 2008; 57: 275–281. [CrossRef] [Google Scholar]
  • Prudhon P. Industrie chimique et le grenelle de l’environnement. Union des industries chimiques 2010. [Google Scholar]
  • Shen L, Haufe J, Patel MK. Product overview and market projection of emerging biobased plastics, Utrecht University commissioned by European Polysaccharide network of excellence and European bioplastics 2009. [Google Scholar]
  • Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas JP, Robin JJ. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. J Polym Sci Part A: Polym Chem 2011; 49: 2434–2444. [CrossRef] [Google Scholar]
  • Tamami B, Sohn S, Wilkes GL. Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J Appl Polym Sci 2004; 92: 883–891. [CrossRef] [Google Scholar]
  • Tomita H, Sanda F, Endo T. Polyaddition of bis(seven-membered cyclic carbonate) with diamines: A novel and efficient synthetic method for polyhydroxyurethanes. J Polym Sci Part A: Polym Chem 2001; 39: 4091–4100. [CrossRef] [Google Scholar]
  • Wang H, Wang H, Zhou G. Synthesis of rosin-based imidoamine-type curing agents and curing behavior with epoxy resin. Polym Int 2011; 60: 557–563. [CrossRef] [Google Scholar]
  • Whelan Jr JM, Cotter RJ. Multiple cyclic carbonate polymers. US Paten t3072613, 1963. [Google Scholar]
  • Xu Y, Petrovic Z, Das S, Wilkes GL. Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer 2008; 49 : 4248–4258. [CrossRef] [Google Scholar]
  • Yeganeh H, Hojati-Talemi P. Polym. Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol). Degrad Stab 2007 ; 92: 480–489. [CrossRef] [Google Scholar]
  • Zao HP, Zhang JF, Sun XS, Hua DH. Syntheses and properties of cross-linked polymers from functionalized triglycerides. J Appl Polym Sci 2008; 110: 647–656. [CrossRef] [Google Scholar]
  • Zanetti-Ramos BG, Lemos-Senna E, Soldi V, Borsali R, Cloutet E, Cramail H. Polyurethane nanoparticles from a natural polyol via miniemulsion technique. Polymer 2006; 47: 8080–8087. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.