Open Access
Numéro
OCL
Volume 19, Numéro 3, Mai-Juin 2012
Page(s) 169 - 183
Section Dossier : Colza et développement durable
DOI https://doi.org/10.1051/ocl.2012.0455
Publié en ligne 15 mai 2012
  • Alford DV, Nilsson C, Ulber B. Insect pests of oilseed rape crops. In: Alford DV (Ed.), Biocontrol of oilseed rape pests. Oxford, UK : Blackwell Science, 2003 : 9–41. [CrossRef] [Google Scholar]
  • Altieri MA. The ecological role of biodiversity in agroecosystems. AgriC Ecosyst Environ 1999 ; 74 : 19–31. [CrossRef] [Google Scholar]
  • Altieri MA, Nicholls CI. An agroecological basis for biological control through conservation. In : California conf on biological control IV. Berkeley, California, USA, 13-15 July 2004 : 2839 [Google Scholar]
  • Andersen MK, Hauggaard-Nielsen H, Weiner J, Jensen ES. Competitive dynamics in two- and three-component intercrops. J Appl Ecol 2007 ; 44 : 545–551. [CrossRef] [Google Scholar]
  • Andow DA. Vegetational diversity and arthropod population response. Annu Rev Entomol 1991 ; 36 : 561–586. [CrossRef] [Google Scholar]
  • Attoumani-Ronceux A, Aubertot JN, Guichard L, et al. Guide pratique pour la conception de systèmes de culture économes en produits phytosanitaires – Application aux systèmes de polyculture. Edition MAAPRAT, 2011. Document principal et documents annexes disponibles en téléchargement sur: www.systemesdecultureinnovants.org/et sur http://agriculture.gouv.fr/guide-ecophyto-grandes-cultures. [Google Scholar]
  • Aubertot JN, Carpentier A, Gril JJ, et al. Pesticides, agriculture et environnement : réduire l’utilisation des pesticides et limiter leurs impacts environnementaux. Expertise collective INRA-Cemagref, 2005. [Google Scholar]
  • Barari H, Cook SM, Clark SJ, Williams IH. Effect of a turnip rape (Brassica rapa) trap crop on stem-mining pests and their parasitoids in winter oilseed rape (Brassica napus). BioControl 2005 ; 50 : 69–86. [CrossRef] [Google Scholar]
  • Barbottin A, Le Bail M, Jeuffroy HM. The Azodyn crop model as a decision support tool for choosing cultivars. Agronomy for Sustainable Development 2006 ; 26 : 107–115. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural land- scapes: A review on landscape composition, biodiversity and natural pest control. P Roy Soc Lond 2006 ; 273 : 1715–1727. [CrossRef] [Google Scholar]
  • Bjorkman C, Eklund K. Factors affecting willow leaf beetles (Phratora vulgatissima) when selecting overwintering sites. Agricultural and Forest Entomology 2006 ; 8 : 97–101. [CrossRef] [Google Scholar]
  • Bouchard C, Valantin-Morison M, Grandeau G. Itinéraires techniques intégrés du colza d’hiver : comment concilier environnement et économie. Courrier de l’environnement. Inra, décembre 2011. [Google Scholar]
  • Broad ST, Schellhorn NA, Lisson SN, Mendham NJ, Corkrey R. Host location and parasitism of Brevicoryne brassicae in diversified broccoli cropping systems. Entomol Exp Appl 2008 ; 129 : 166–171. [CrossRef] [Google Scholar]
  • Büchi R. Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agriculture, Ecosystems and Environment 2002 ; 90 : 255–263. [CrossRef] [Google Scholar]
  • Büchs W. Impact of on-farm landscape structures and farming systems on predators. In: Alford DV (Ed.), Biocontrol of oilseed rape pests. Oxford, UK : Blackwell, 2003. [Google Scholar]
  • Büchs W, Harenberg A, Prescher S, Weber G, Hattwig F. Entwicklung von Evertebratenzonosen bei verschiedenen Formen der Flachenstillegung und Extensivierung. Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirtschaft Berlin-Dahlem 1999 ; 368 : 9–38. [Google Scholar]
  • Büchs W, Katzur K. Cultivation techniques as means to control pests in organic oilseed rape production. IOBC/wprs Bull 2004 ; 27 : 225–236. [Google Scholar]
  • Butts RA, Floate KD, David M, Blackshaw RE, Burnett PA. Influence of intercropping canola or pea with barley on assemblages of ground beetles (Coleoptera: Carabidae). Environ Entomol 2003 ; 32 : 535–541. [CrossRef] [Google Scholar]
  • CETIOM, 2011. http://www.cetiom.fr/dossiers-phares/techniques-innovantes-dimplantations/couverts-associes. [Google Scholar]
  • Cook SM, Bartlet E, Murray DA, Williams IH. The role of pollen odour in the attraction of pollen beetles to oilseed rape flowers. Entomol Exp Appl 2002 ; 104 : 43–50. [CrossRef] [Google Scholar]
  • Cook SM, Khan ZR, Pickett JA. The use of push-pull strategies in integrated pest management. Ann Rev Entom 2007 ; 52 : 375–400. [CrossRef] [PubMed] [Google Scholar]
  • Cook SM, Smart LE, Martin JL, Murray DA, Watts NP, Williams IH. Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus). Entomologia Experimentalis et Applicata 2006 ; 119 : 221–229. [CrossRef] [Google Scholar]
  • David C, Jeuffroy MH, Laurent F, Mangin M, Meynard JM. The assessment of Azodyn-Org model for managing nitrogen fertilization of organic winter wheat. Eur J Agron 2005 ; 23 : 225–242. [CrossRef] [Google Scholar]
  • Denys C, Tscharntke T. Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 2002 ; 130 : 315–324. [PubMed] [Google Scholar]
  • Dosdall LM, Herbut MJ, Cowle NT. Susceptibilities of species and cultivars of canola and mustard to infestation by root maggots (Delia spp.) (Diptera: Anthomyiidae). Canadian Entomologist 1994 ; 126 : 251–260. [CrossRef] [Google Scholar]
  • Dosdall LM, Herbut MJ, Cowle NT, Micklich TM. The effect of seeding date and plant density on infestations of root maggots, Delia spp. (Diptera: Anthomyiidae), in canola. Canadian Journal of Plant Science 1996 ; 76 : 169–177. [CrossRef] [Google Scholar]
  • Dosdall LM, Stevenson FC. Managing flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola with seeding date, plant density, and seed treatment. Agronomy Journal 2005 ; 97 : 1570–1578. [CrossRef] [Google Scholar]
  • Dosdall LM, Dolinski MG, Cowle NT, Conway PM. The effect of tillage regime, row spacing, and seeding rate on feeding damage by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae), in canola in central Alberta, Canada. Crop Protection 1999 ; 18 : 217–224. [CrossRef] [Google Scholar]
  • Dunning JB, Danielson JB, Pulliam HR. Ecological processes that affect populations in complex landscapes. Oikos 1992 ; 65 : 169–175. [CrossRef] [Google Scholar]
  • Ecophyto R&D. Vers des systèmes de culture économes en produits phytosanitaires. Tome II. Analyse comparative des différents systèmes en grandes cultures. Paris : Inra éditeur (France), 2009. [Google Scholar]
  • Eickermann M, Ulber B, Vidal S. Resynthesized lines and cultivars of Brassica napus L. provide sources of resistance to the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)). Bulletin of Entomological Research 2011 ; 101 : 287–294. [CrossRef] [PubMed] [Google Scholar]
  • Eilenberg J, Hajek A, Lomer C. Suggestions for unifying the terminology in biological control. Biocontrol 2001 ; 46 : 387–400. [CrossRef] [Google Scholar]
  • Ellis PR, Farrell JA. Resistance to cabbage aphid (Brevicoryne brassicae) in six brassica accessions in New Zealand. New Zealand Journal of Crop and Horticultural Science 1995 ; 23 : 25–29. [CrossRef] [Google Scholar]
  • Fahrig L, Merriam G. Conservation of fragmented populations. Conserv Biol 1994 ; 8 : 50–59. [CrossRef] [Google Scholar]
  • Ferron P, Deguine JP. Crop protection, biological control, habitat management and integrated farming, a review. Agron Sustain Dev 2005 ; 25 : 17–24. [CrossRef] [EDP Sciences] [Google Scholar]
  • Finch S, Collier RH. Host-plant selection by insects – a theory based on ‘appropri- ate/inappropriate landings’ by pest insects of cruciferous plants. Entomol Exp Appl 2000 ; 96 : 91–102. [CrossRef] [Google Scholar]
  • Finch S, Collier RH. Host-plant selection by insects – the ‘missing link’. IOBC/wprs Bull 2003 ; 26 : 103–108. [Google Scholar]
  • Frank T. Species diversity and activity densities of epigaeic and flower visiting arthropods in sown weed strips and adjacent fields. Bulletin OILB/SROP 1996 ; 19 : 101–105. [Google Scholar]
  • Free JB, Williams IH. The response of pollen beetle, Meligethes aeneus, and the seed weevil, Ceutorhynchus assimilis, to oilseed rape, Brassica napus, and other plants. J Appl Ecol 1978 ; 15 : 761–774. [CrossRef] [Google Scholar]
  • Gurr GM, Wratten SD, Luna JM. Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol 2003 ; 4 : 107–116. [CrossRef] [Google Scholar]
  • Hokkanen HMT. Biological control methods of pest insects in oilseed rape. EPPO Bull 2008 ; 38 : 104–109. [CrossRef] [Google Scholar]
  • Hokkanen HMT, Husberg GB, Soderblom M. Natural enemy conservation for the integrated control of the rape blossom beetle Meligethes aeneus F. Ann Agr Fenn 1988 ; 27 : 281–294. [Google Scholar]
  • Holland JM. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 2004 ; 103 : 1–25. [CrossRef] [Google Scholar]
  • Hopkins RJ, Ekbom B. Low oviposition stimuli reduce egg production in the pollen beetle Meligethes aeneus. Physiol Entomol 1996 ; 21 : 118–122. [CrossRef] [Google Scholar]
  • Hopkins RJ, Ekbom B. The pollen beetle, Meligethes aeneus, changes egg production rate to match host quality. Oecologia 1999 ; 120 : 274–278. [PubMed] [Google Scholar]
  • Horrigan L, Lawrence RS, Walker P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environmental Health Perspectives 2002 ; 110 : 445–456. [CrossRef] [PubMed] [Google Scholar]
  • Hummel JD, Dosdall LM, Clayton GW, Harker KN, O’Donovan JT. Responses of the parasitoids of Delia radicum (Diptera: Anthomyiidae) to the vegetational diversity of intercrops. Biological Control 2010 ; 55 : 151–158. [CrossRef] [Google Scholar]
  • Jullien A, Mathieu A, Allirand JM, et al. Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model. Ann Bot 2011 ; 107 : 765–779. [CrossRef] [PubMed] [Google Scholar]
  • Kogan M. Plant resistance in pest management. In: Metcalf RL, Luckmann WH (Eds.), Introduction to Insect Pest management. 3rd ed. New York : Wiley, 1994 : 73–128. [Google Scholar]
  • Kromp B. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems & Environment 1999 ; 74 : 187–228. [CrossRef] [Google Scholar]
  • Lagerlof J, Wallin H. The abundance of arthropods along two field margins with different types of vegetation composition: an experimental study. Agriculture, Ecosystems & Environment 1993 ; 43 : 141–154. [CrossRef] [Google Scholar]
  • Lançon J, Wery J, Rapidel B, et al. An improved methodology for integrated crop management systems. Agronomy for Sustainable Development 2007 ; 27 : 101–110. [CrossRef] [EDP Sciences] [Google Scholar]
  • Landis DA, Wratten SD, Gurr GM. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 2000 ; 45 : 175–201. [CrossRef] [PubMed] [Google Scholar]
  • Lerin J. Yield losses associated with 2 successive pests (Ceuthorrhynchus napi Gyll. and Meligethes aeneus F) on winter rape (cultivar Bienvenu). Agronomie 1988 ; 8 : 251–256. [CrossRef] [EDP Sciences] [Google Scholar]
  • Loyce C, Rellier JP, Meynard JM. Management planning for winter wheat with multiple objectives: The BETHA system. Agricultural Systems 2002 ; 72 : 9–31. [CrossRef] [Google Scholar]
  • Mabbett T. Straw incorporation trials reveal arable slug damage will increase. Agr Int 1991 ; 43 : 304–306. [Google Scholar]
  • Malézieux E, Crozat Y, Dupraz C, et al. Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development 2008 ; 28 : 1–2. e-first : DOI: 10.1051/agro2007057. [CrossRef] [EDP Sciences] [Google Scholar]
  • Marshall EJP. Agricultural landscapes: Field margin habitats and their interaction with crop production. J Crop Improvement 2004 ; 12 : 365–404. [CrossRef] [Google Scholar]
  • Matson PA, Parton WJ, Power AG, Swift MJ. Agricultural intensification and ecosystem properties. Science 1997 ; 277 : 504–509. [CrossRef] [PubMed] [Google Scholar]
  • Médiène S, Valantin-Morison M, Sarthou JP, et al. Agroecosystem management and biotic interactions: a review ». Agronomy for Sustainable Development 2011 ; 31 : 491–514. [CrossRef] [Google Scholar]
  • Meynard JM, Doré T, Habib R. L’évaluation et la conception de systèmes de culture pour une agriculture durable. Les Entretiens du Pradel 1ère édition. Autour d’Olivier de Serres : Pratiques Agricoles et Pensée Economique - Partie Agronomique ; 2000/09/28-30 ; Le Pradel (FRA). Comptes Rendus de l’Académie d’Agriculture de France 2001 ; 87 : 223–236. [Google Scholar]
  • Meynard JM, Doré T, Lucas P. Agronomic approach: cropping systems and plant diseases. Comptes Rendus Biologies 2003 ; 37–46. [CrossRef] [PubMed] [Google Scholar]
  • Nilsson C. Impact of ploughing on emergence of pollen beetle parasitoids after hibernation. Z Angew Entomol 1985 ; 100 : 302–308. [CrossRef] [Google Scholar]
  • Nilsson C. Pollen Beetle (Meligethes aeneus spp) in oilseed rape crops (Brassica napus L.): Biological interactions and crop losses Dissertation. Sweden, Swedish University of Agricultural Sciences, 1994. [Google Scholar]
  • Pfiffner L, Wyss E. Use of sown wildflower strips to enhance natural enemies of agricultural pest. In: Gurr GM, et al. (Eds.), Ecological engineering for pest management - Advances in habitat manipulation for arthropods. Collingwood – Oxon : CSIRO Publishing - CABI Publishing, 2004 : 165–186. [Google Scholar]
  • Pickett CH, Bugg RL. Enhancing biological control: Habitat management to promote natural enemies of agricultural pests. Berkeley, USA : University of California Press, 1998. [Google Scholar]
  • Pickett CH, Roltsch WJ, Corbett A, Daane KM. Habitat management for enhancing biological control: benefits and pitfalls. In: California Conference on Biological Control II, The Historic Mission Inn Riverside, California Conference on Biological Control II, The Historic Mission Inn Riverside, California, USA, 11-12 July 2000, 81–85. [Google Scholar]
  • Pilorgé E, Maisonneuve C, Ballanger Y. Les ravageurs du colza d’hiver. Paris : CETIOM, 1997 : 75–85. [Google Scholar]
  • Plantegenest M, Le May C, Fabre F. Landscape epidemiology of plant diseases. Journal of the Royal Society 2007 ; 4 : 963–972. [Google Scholar]
  • Podlaska J, Markus J, Dmoch J, Loboda T. Compensation of the damage caused by pollen beetle (Meligethes aeneus) on winter oilseed rape under different plant density and fertilisation. I – some morphological characters. Rosliny Oleiste 1996 ; 17 : 325–330. [Google Scholar]
  • Pontin DR, Wade MR, Kehrli P, Wratten SD. Attractiveness of single and multiple species flower patches to beneficial insects in agroecosystems. Ann App. Biol 2006 ; 148 : 39–47. [CrossRef] [Google Scholar]
  • Potting RPJ, Perry JN, Powell W. Insect behavioural ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies. Ecological Modelling 2005 ; 182 : 199–216. [CrossRef] [Google Scholar]
  • La Prévost P. régulation biologique un concept intégrateur de la connaissance agronomique. Courrier de l’environnement de l’INRA 2000 ; 39 : 27–35. [Google Scholar]
  • Pullaro TC, Marino PC, Jackson DM, Harrison HF, Keinath AP. Effects of killed cover crop mulch on weeds, weed seeds, and herbivores. Agric Ecosyst Environ 2006 ; 115 : 97–104. doi: 10.1016/j.agee.2005.12.021. [CrossRef] [Google Scholar]
  • Rahim A, Hashmi A, Khan NA. Effects of temperature and relative humidity on longevity and development of Ooencyrtus papilionis Ashmead (Hymenoptera: Eulophidae), a parasite of the sugarcane pest, Pyrilla perpusilla Walker (Homoptera: Cicadellidae). Environmental Entomology 1991 ; 20 : 774–775. [Google Scholar]
  • Rebek EJ, Sadof CS, Hanks LM. Influence of floral resource plants on control of an armored scale pest by the parasitoid Encarsia citrina (Craw.) (Hymenoptera: Aphelinidae). Biological Control 2006 ; 37 : 320–328. [CrossRef] [Google Scholar]
  • Riechert SE, Lockley T. Spiders as biological control agents. Annu Rev Entomol 1984 ; 29 : 299–320. [CrossRef] [Google Scholar]
  • Roland J, Taylor PD. Insect parasitoid species respond to forest structure at different spatial scales. Nature 1997 ; 386 : 710–713. [CrossRef] [Google Scholar]
  • Root RB. Organisation of a plant-arthropod association in simple and diverse habitats : the fauna of collards (Brassica oleracea). Ecol Monogr 1973 ; 43 : 95–124. [CrossRef] [Google Scholar]
  • Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J. Biological control of insect pests in agroecosystems: effects of crop management, farming systems and semi-natural habitats at the landscape scale. A review. Advances in Agronomy 2010 : 219–259. [CrossRef] [Google Scholar]
  • Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J. Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landscape Ecology 2011a ; 26 : 473–486. [CrossRef] [Google Scholar]
  • Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J. Effect of crop management and landscape context on insect pest populations and crop damage. Agriculture, Ecosystems and Environment 2011b. (in press ; http://dx.doi.org/10.1016/j.agee.2011.05.004). [Google Scholar]
  • Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J. Local and landscape determinants of pollen beetle (Meligethes aeneus F) abundance in overwintering habitats. Agriculture and Forest Ecology 2011c. [Google Scholar]
  • Rusch A, Valantin-Morison M. Effect of nitrogen fertilization, cultivar and species on attractiveness and nuisibility of two major pests of winter oilseed rape (Brassica napus L.): pollen beetle (Meligethes aeneus F) and stem weevil (Ceutorhynchus napi Gyl.). Congress of European Society Agronomy, 15-18 Septembre 2008, Bologne (Italie). [Google Scholar]
  • Schmidt MH, Thewes U, Thies C, Tscharntke T. Aphid suppression by natural enemies in mulched cereals. Entomologia Experimentalis et Applicata 2004 ; 113 : 87–93. [CrossRef] [Google Scholar]
  • Sotherton NW. The distribution and abundance of predatory arthropods overwintering on farmland. Annals of Applied Biology 1984 ; 105 : 423–429. [CrossRef] [Google Scholar]
  • Stern VM, Smith RF, Van den Bosch F, Hagen KS. The integrated control concept. Hilgardia 1959 ; 29 : 81–101. [Google Scholar]
  • Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P. Ecological impacts of arable intensification in Europe. J Environ Manage 2001 ; 63 : 337–365. [CrossRef] [PubMed] [Google Scholar]
  • Tahvanainen JO, Root RB. The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera : Chrysomelidae). Oecologia 1972 ; 10 : 321–346. doi :10.1007/BF00345736. [CrossRef] [PubMed] [Google Scholar]
  • Thies C, Steffan-Dewenter I, Tscharntke T. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 2003 ; 101 : 18–25. [CrossRef] [Google Scholar]
  • Thies C, Tscharntke T. Landscape structure and biological control in agroecosystems. Science 1999 ; 285 : 893–895. [CrossRef] [PubMed] [Google Scholar]
  • Thorbek P, Bilde T. Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41 : 526–538. [CrossRef] [Google Scholar]
  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature 2002 ; 418 : 671–677. [CrossRef] [PubMed] [Google Scholar]
  • Ulmer BJ, Dosdall LM. Emergence of overwintered and new generation adults of the crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Crop Protection 2006 ; 25 : 23–30. [CrossRef] [Google Scholar]
  • Valantin-Morison M, Meynard JM. A conceptual model to design prototypes of crop management: a way to improve organic Winter Oilseed Rape performance in a survey in farmers’ fields. In: crop management, ed In TECH, 2012. [Google Scholar]
  • Valantin-Morison M, Quere L. Effects of turnip rape trap crops on oilseed rape pests in a network of organic farmers’ fields. Congress of European Project MASTER, Integrated pest mangement Göttingen (Allemagne), 2006/04/2-5. [Google Scholar]
  • Valantin-Morison M, Guichard L, Jeuffroy MH. Comment maîtriser la flore adventice des grandes cultures à travers les éléments de l’itinéraire technique ? Carrefour de l’Innovation Agronomique 2008 ; 3 : 27–41. http://www.inra.fr/ciag/revue/volume_3_decembre_2008. [Google Scholar]
  • Valantin-Morison M, Butier A, Berder J. Mixing Winter oilseed rape (WOSR) and legume to smoother weeds, disturb insects and reduce nitrogen use in spring: possible or not? 13th International Rapeseed Congress June 5–9. Prague : Czech Republic, 2011. [Google Scholar]
  • Valantin-Morison M, Pinochet X. Concevoir des itinéraires techniques intégrés pour le colza d’hiver: les acquis et les défis de demain. Carrefour de l’Innovation Agronomique 2010 ; 8 : 35–55. http://www.inra.fr/ciag/revue/volume_8_mai_2010. [Google Scholar]
  • Valantin-Morison M, Meynard J, Dore T. Effects of crop management and surrounding field environment on insect incidence in organic winter oilseed rape (Brassica napus L.). Crop Protection 2007 ; 26 : 1108–1120. doi: 10.1016/j.cropro.2006.10.005. [CrossRef] [Google Scholar]
  • Vinatier F, Valantin-Morison M. Mosaic-Pest: Landscape management of the pollen beetle using a spatially explicit model. In: Proceedings of the 8th World Congress of the International Association for Landscape Ecology. 18-23 august, Beijing, China, 2011 : 545–546. [Google Scholar]
  • Vinatier F, Gosme M, Valantin-Morison M. Mosaic-Pest, landscape model for pest management(I): model description and use for IPM strategies testing. Lanscape Ecology 2012a (soumis). [Google Scholar]
  • Vinatier F, Gosme M, Valantin-Morison M Mosaic-Pest, landscape model for pest management(II): parameter estimation and sensitivity analysis. Landscape ecology 2012b (soumis). [Google Scholar]
  • Vinatier F, Valantin-Morison M.. How to reinforce pollen beetle biocontrol at landscape level using a spatially explicit model ? IOBC 3rd-5th october 2011. Göttingen. [Google Scholar]
  • Vinatier F, Tixier P, Duyck PH, Lescourret F. Factors and mechanisms explaining spatial heterogeneity: a review of methods for insect populations. Methods in Ecology and Evolution 2011 ; 2 : 11–22. [CrossRef] [Google Scholar]
  • Wackers FL. Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biological Control 2004 ; 29 : 307–314. [CrossRef] [Google Scholar]
  • Weiss MJ, Schatz BG, Nead BA, . Flea beetle (Coleoptera: Chrysomelidae) populations and crop yield in field pea and oilseed rape intercrops. Environ Entomol 1994 ; 23 : 654–658. [Google Scholar]
  • Williams IH, Free JB. Compensation of oil seed rape (Brassica napus L.) plants after damage to their buds and pods. J Agr Sci 1979 ; 92 : 53–59. [CrossRef] [Google Scholar]
  • Williams IH (ed.). Biocontrol-Based Integrated Management of Oilseed Rape Pests. Dordrecht : Springer Netherlands, 2010a. [CrossRef] [Google Scholar]
  • Williams IH. The major insect pests of oilseed rape in Europe and their management: An overview. In: Williams IH (Eds.), Biocontrol-based integrated management of oilseed rape pests. Springer.London 2010b : 1–44. [CrossRef] [Google Scholar]
  • Wyss E. The effects of weed strips on aphids and aphidophagous predators in an apple 1487 1488 orchard. Entomol Exp Appl 1995 ; 75 : 43–49. [CrossRef] [Google Scholar]
  • Zabel J, Tscharntke T. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially? Oecologia 1998 ; 116 : 419–425. [CrossRef] [PubMed] [Google Scholar]
  • Zaller JG, Moser D, Drapela T, Schmoger C, Frank T. Effect of within-field and landscape factors on insect damage in winter oilseed rape. Agr Ecosyst Environ 2008 ; 123 : 233–238. [CrossRef] [Google Scholar]
  • Zaller JG, Moser D, Drapela T, Schmoger C, Frank T. Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic Appl Ecol 2008 ; 9 : 682–690. [CrossRef] [Google Scholar]
  • Zehnder GW, Hough-Goldstein J. Colorado potato beetle (Coleoptera: Chrysomelidae) population development and effects on yield of potatoes with and without straw mulch. J Econ Entomol 1989 ; 83 : 1982–1987. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.