Open Access
Numéro
OCL
Volume 19, Numéro 3, Mai-Juin 2012
Page(s) 147 - 154
Section Dossier : Colza et développement durable
DOI https://doi.org/10.1051/ocl.2012.0456
Publié en ligne 15 mai 2012
  • Agence canadienne d’inspection des aliments. DD1995-04 évaluation du risque environnemental associé à une nouvelle méthode d’hybridation du colza (B.napus L.) de Plant Genetic Systems Inc. (PGS). www.inspection.gc.ca. [Google Scholar]
  • Ahman I, Lehrman A, Ekbom B. Impact of herbivory and pollination on performance and competitive ability of oilseed rape transformed for pollen beetle resistance. Arthropod-Plant Interactions 2009 ; 3 : 105–113. [CrossRef] [Google Scholar]
  • Cartea ME, Migdal M, Galle AM, Pelletier G, Guerche P. Comparison of sense and antisense methodologies for modifying the fatty acid composition of Arabidopsis thaliana oilseed. Plant Science 1998 ; 136 : 181–194. [CrossRef] [Google Scholar]
  • Dong X, Ji R, Guo X, et al. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 2008 ; 228 : 331–340. [CrossRef] [PubMed] [Google Scholar]
  • Dröge W. BroerI Pühler A. Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-Phosphinothricin (glufosinate) differently from untransformed plants. Planta 1992 ; 187 : 142–151. [PubMed] [Google Scholar]
  • Freyssinet G, Pelissier B, Freyssinet M, Delon R. Crops resistant to oxynils: from the laboratory to the market. Field Crops Research 1996 ; 45 : 125–133. [CrossRef] [Google Scholar]
  • Freyssinet M, Dumas B, Sailland A, Pepin R, Freyssinet G. Transgenic crops expressing oxalate oxidase as a way to incease resistance to oxalate producing pathogens. 9th International Rape Seed Congress Cambridge. 1995 ; 4 : 1278–1280. [Google Scholar]
  • Grezes-Besset B, Grison R, Villeger MJ, Nicolas C, Toppan A. Field testing against four fungal pathogens of transgenic Brassica napus plants constitutively expressing a chitinase gene. 9th International Rape Seed Congress Cambridge. 1995 ; 3 : 781–783. [Google Scholar]
  • Grison R, Grezes-Besset B, Schneider M, Toppan A. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology 1996 ; 14 : 643–646. [CrossRef] [PubMed] [Google Scholar]
  • Good AG, Johnson SJ, De Pauw M, et al. Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 2007 ; 85 : 252–262. [CrossRef] [Google Scholar]
  • Guguin N, Lehmann L, Richter A, Busch H, Despeghel JP. Breeding and development of HOLL winter oilseed rape hybrids. 13th international Rapeseed Congress Prague June 5-9 2011 : 566–568. [Google Scholar]
  • Hua S, Shamsi IH, Guo Y, et al. Sequence expression divergence, and complementation of homologous ALCATRAZ loci in Brassica napus. Planta 2009 ; 230 : 493–503. [CrossRef] [PubMed] [Google Scholar]
  • Jouanin L, Bonadé-Bottino M, Girard C, Morrot G, Giband M. Transgenic plants for insect resistance. Plant Sci 1998 ; 131 : 1–11. [CrossRef] [Google Scholar]
  • Luciani A. Etude du progrès génétique chez différentes espèces de grandes cultures. GEVES : Ed La Minière, 2004. [Google Scholar]
  • Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). TAG 2009 ; 118 : 765–773. [Google Scholar]
  • Ostergaard L, Kempin S, Bies D, Klee H, Yanofsky M. Pod shattering-resistant Brassica fruit produced by ectopic expression of the FRUITFALL gene. Plant Biotechnol J 2006 ; 4 : 45–51. [CrossRef] [PubMed] [Google Scholar]
  • Pelletier G, Primard C. Vedei Chetrit P, Remy R, Rousselle P, Renard M. Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Molecular and General Genetics 1983 ; 191 : 244–250. [Google Scholar]
  • Reiss E, Schubert J, Scholze P, Kramer R, Sonntag K. The barley thaumatin-like protein Hv-TLP8 enhances resistance of oilseed rape plants to Plasmodiophora brassicae. Plant Breeding 2009 ; 128 : 210–212. [CrossRef] [Google Scholar]
  • Rudloff et Wehling. 1997 Release of transgenic oilseed rape (Brassica napus L.) with altered fatty acids ISHS Acta Horticulturae 459 : International Symposium Brassica 97, Xth Crucifer Genetics Workshop. [Google Scholar]
  • Shah DM, Rogers SG, Horsch RB, Fraley RT. Glyphosate resistant plant. US Patent n̊ 4 940 835. July 1990. [Google Scholar]
  • Simard MJ, Légère A, Pageau D, Lajeunesse J, Warwick SI. The frequency and persistence of volunteer canola (Brassica napus) in Quebec cropping systems. Weed Technol 2002 ; 16 : 433–439. [CrossRef] [Google Scholar]
  • Jr Stewart CN, Adang MJ, Ail JN, Raymer PL, Ramachandran S, Parrott WA. Insect control and dosage effects in transgenic canola, Brassica napus L. (Brassicaceae), containing a synthetic Bacillus thuringiensis crylA(c) gène. Plant Physiology 1996 ; 112 : 115–120. [PubMed] [Google Scholar]
  • Thompson C, Dunwell JM, Johnstone CE, et al. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica 1995 ; 85 : 169–172. [CrossRef] [Google Scholar]
  • Voelker TA, Worrell AC, Anderson L, et al. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 1992 ; 257 : 72–74. [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Fristensky B. Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani. Molecular Breeding 2001 ; 8 : 263–271. [CrossRef] [Google Scholar]
  • Yang X, Wang H, Lui G, Wang X. The lignin biosynthesis regulation and its relationship with Sclerotinia and lodging resistances for Brassica napus. 12th International Rape Seed Congress Wuhan 2007 ; 2 : 50–52. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.