Open Access
Numéro
OCL
Volume 18, Numéro 6, Novembre-Décembre 2011
Structures des lipides dans les aliments et impacts nutritionnels
Page(s) 301 - 306
Section Journées Chevreul 2011 Lipids and Brain
DOI https://doi.org/10.1051/ocl.2011.0412
Publié en ligne 15 novembre 2011
  • Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 2007; 30: 596–602. [CrossRef] [PubMed] [Google Scholar]
  • Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001; 36: 1007–1024. [CrossRef] [PubMed] [Google Scholar]
  • Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 2006; 83: 1505S–1519S. [PubMed] [Google Scholar]
  • Calon F, Cole G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 287–293. [CrossRef] [PubMed] [Google Scholar]
  • Capuron L, Moranis A, Combe N, et al. Vitamin E status and quality of life in the elderly: influence of inflammatory processes. Br J Nutr 2009; 102: 1390–1394. [CrossRef] [PubMed] [Google Scholar]
  • Capuron L, Schroecksnadel S, Feart C, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry 2011; 70: 175–182. [CrossRef] [PubMed] [Google Scholar]
  • Carrie I, Smirnova M, Clement M, De JD, Frances H, Bourre JM. Docosahexaenoic acid-rich phospholipid supplementation: effect on behavior, learning ability, and retinal function in control and n-3 polyunsaturated fatty acid deficient old mice. Nutr Neurosci 2002; 5: 43–52. [CrossRef] [PubMed] [Google Scholar]
  • Dantzer R, Bluthe RM, Gheusi G, et al. Molecular basis of sickness behavior. Ann N Y Acad Sci 1998; 856: 132–138. [CrossRef] [PubMed] [Google Scholar]
  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 46–56. [CrossRef] [PubMed] [Google Scholar]
  • De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Laye S. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem 2008; 105: 296–307. [CrossRef] [PubMed] [Google Scholar]
  • Favreliere S, Perault MC, Huguet F, et al. DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus. Neurobiol Aging 2003; 24: 233–243. [CrossRef] [PubMed] [Google Scholar]
  • Feart C, Peuchant E, Letenneur L, et al. Plasma eicosapentaenoic acid is inversely associated with severity of depressive symptomatology in the elderly: data from the Bordeaux sample of the Three-City Study. Am J Clin Nutr 2008; 87: 1156–1162. [PubMed] [Google Scholar]
  • Feart C, Torres MJ, Samieri C, et al. Adherence to a Mediterranean diet and plasma fatty acids: data from the Bordeaux sample of the Three-City study. Br J Nutr 2011; 106: 149–158. [CrossRef] [PubMed] [Google Scholar]
  • Fedorova I, Salem Jr N. Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids 2006; 75: 271–289. [CrossRef] [PubMed] [Google Scholar]
  • Gamoh S, Hashimoto M, Sugioka K, et al. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 1999; 93: 237–241. [CrossRef] [PubMed] [Google Scholar]
  • Godbout JP, Chen J, Abraham J, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. Faseb J 2005; 19: 1329–1331. [CrossRef] [PubMed] [Google Scholar]
  • Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA. The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem 2006; 99: 1263–1272. [CrossRef] [PubMed] [Google Scholar]
  • Kiecolt-Glaser JK, Belury MA, Porter K, Beversdorf DQ, Lemeshow S, Glaser R. Depressive symptoms, omega-6:omega-3 fatty acids, and inflammation in older adults. Psychosom Med 2007; 69: 217–224. [CrossRef] [PubMed] [Google Scholar]
  • Lafourcade M, Larrieu T, Mato S, et al. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci 2011; 14: 345–350. [CrossRef] [PubMed] [Google Scholar]
  • Laye S. Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 2010; 82: 295–303. [CrossRef] [PubMed] [Google Scholar]
  • Laye S, Parnet P, Goujon E, Dantzer R. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res 1994; 27: 157–162. [CrossRef] [PubMed] [Google Scholar]
  • Lynch AM, Loane DJ, Minogue AM, et al. Eicosapentaenoic acid confers neuroprotection in the amyloid-beta challenged aged hippocampus. Neurobiol Aging 2007; 28: 845–855. [CrossRef] [PubMed] [Google Scholar]
  • Lynch MA. Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1 beta? Prog Neurobiol 1998; 56: 571–589. [CrossRef] [PubMed] [Google Scholar]
  • McGahon BM, Martin DS, Horrobin DF, Lynch MA. Age-related changes in synaptic function: analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience 1999; 94: 305–314. [CrossRef] [PubMed] [Google Scholar]
  • McNamara RK, Jandacek R, Rider T, Tso P, Cole-Strauss A, Lipton JW. Omega-3 fatty acid deficiency increases constitutive pro-inflammatory cytokine production in rats: relationship with central serotonin turnover. Prostaglandins Leukot Essent Fatty Acids 2010; 83: 185–191. [CrossRef] [PubMed] [Google Scholar]
  • Meydani SN, Endres S, Woods MM, et al. Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J Nutr 1991; 121: 547–555. [PubMed] [Google Scholar]
  • Mingam R, Moranis A, Bluthe RM, et al. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur J Neurosci 2008; 28: 1877–1886. [CrossRef] [PubMed] [Google Scholar]
  • Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA. Modulation of amyloid-beta-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. J Neurochem 2007; 103: 914–926. [CrossRef] [PubMed] [Google Scholar]
  • Moranis A, Delpech JC, De Smedt-Peyrusse V, et al. Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice.Brain Behav Immun 2011. [Google Scholar]
  • Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 2003; 4: 103–112. [CrossRef] [PubMed] [Google Scholar]
  • Petursdottir DH, Olafsdottir I, Hardardottir I. Dietary fish oil increases tumor necrosis factor secretion but decreases interleukin-10 secretion by murine peritoneal macrophages. J Nutr 2002; 132: 3740–3743. [PubMed] [Google Scholar]
  • Rees D, Miles EA, Banerjee T, et al. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. Am J Clin Nutr 2006; 83: 331–342. [CrossRef] [PubMed] [Google Scholar]
  • Rothwell NJ, Luheshi GN. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 2000; 23: 618–625. [CrossRef] [PubMed] [Google Scholar]
  • Samieri C, Feart C, Proust-Lima C, et al. Omega-3 fatty acids and cognitive decline: modulation by ApoEepsilon4 allele and depression. Neurobiol Aging 2011; 32(2317) : e13–e22. [CrossRef] [PubMed] [Google Scholar]
  • Simopoulos AP. n-3 fatty acids and human health: defining strategies for public policy. Lipids 2001; 36 Suppl : S83–S89. [CrossRef] [PubMed] [Google Scholar]
  • Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 2006; 60: 502–507. [CrossRef] [PubMed] [Google Scholar]
  • Song C, Leonard BE, Horrobin DF. Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 2004; 7: 43–54. [CrossRef] [PubMed] [Google Scholar]
  • Song C, Manku MS, Horrobin DF. Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J Nutr 2008; 138: 954–963. [CrossRef] [PubMed] [Google Scholar]
  • Streit WJ. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 2006; 29: 506–510. [CrossRef] [PubMed] [Google Scholar]
  • Yehuda S, Rabinovitz S, Mostofsky DI. Treatment with a polyunsaturated fatty acid prevents deleterious effects of Ro4-1284. Eur J Pharmacol 1999; 365: 27–34. [CrossRef] [PubMed] [Google Scholar]
  • Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 2011; 25: 181–213. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.