Open Access
Volume 18, Numéro 5, Septembre-Octobre 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Deuxième partie)
Page(s) 237 - 241
Section Signalling Mechanisms and Metabolism of Omega-3 PUFA in the Brain
Publié en ligne 15 septembre 2011
  • Akbar M, Kim HY. Protective effects of docosahexaenoic acid (DHA) in staurosporine-induced apoptosis: Involvement of wortmanin-sensitive pathway. J Neurochem 2002; 82: 655–665. [CrossRef] [PubMed] [Google Scholar]
  • Akbar M, Calderon F, Wen Z, Kim HY. Docosahexaenoic Acid: A positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 2005; 102: 10858–10863. [CrossRef] [Google Scholar]
  • Alessi DR, Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 1998; 8: 55–62. [CrossRef] [PubMed] [Google Scholar]
  • Birch EE, Garfield S, Hoffman DR, Uauy RD, Birch DG. A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 2000; 42: 174–181. [CrossRef] [PubMed] [Google Scholar]
  • Calderon F, Kim HY. Detection of intracellular phosphatidylserine in living cells. J Neurochem 2008; 104: 1271–1279. [CrossRef] [PubMed] [Google Scholar]
  • Cao D, Kevala K, Jun S, Lovinger D, Kim HY. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem 2009; 111: 510–521. [CrossRef] [PubMed] [Google Scholar]
  • Gamoh S, Hashimoto M, Sugioka K, et al. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 1999; 93: 237–241. [CrossRef] [PubMed] [Google Scholar]
  • Garcia M, Ward G, Ma YC, Salem Jr N, Kim HY. Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain microsomes and C6 glioma cells. J Neurochem 1998; 70: 24–30. [CrossRef] [PubMed] [Google Scholar]
  • Guo M, Stockert L, Akbar M, Kim HY. Neuronal specific increase of phosphatidylserine by docosahexaenoic acid. J. Mol. Neurosci 2007; 33: 67–73. [CrossRef] [PubMed] [Google Scholar]
  • Hamilton J, Greiner R, Salem Jr N, Kim HY. N-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 2000; 35: 863–9. [CrossRef] [PubMed] [Google Scholar]
  • Huang BX, Akbar M, Kevala K, Kim HY. Phosphatidylserine as a critical modulator of Akt activation. J. Cell Biol 2011; 192: 979–992. [CrossRef] [PubMed] [Google Scholar]
  • Improta-Brears T, Ghosh S, Bell RM. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine. Mol Cell Biochem 1999; 198: 171–178. [CrossRef] [PubMed] [Google Scholar]
  • Kevala HJ, Kim HY. Determination of substrate preference in phosphatidylserine decarboxylation by liquid chromatography-electrospray mass spectrometry. Anal Biochem 2001; 292: 130–138. [CrossRef] [PubMed] [Google Scholar]
  • Kim HY, Akbar M, Lau A, Edsall L. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n–3): Role of phosphatidylserine in antiapoptotic effect. J Biol Chem 2000; 275: 35215–35223. [CrossRef] [PubMed] [Google Scholar]
  • Kim HY, Bigelow J, Kevala JH. Substrate preference in phosphatidylserine biosynthesis for docosahexaenoic acid containing species. Biochemistry 2004; 43: 1030–1036. [CrossRef] [PubMed] [Google Scholar]
  • Kim HY. Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem 2007; 282: 18661–18665. [CrossRef] [PubMed] [Google Scholar]
  • Kim HY. Biochemical and biological functions of docosahexaenoic acid in the nervous system: modulation by ethanol. Chem Phys Lipids 2008; 153: 34–36. [CrossRef] [PubMed] [Google Scholar]
  • Kim HY, Akbar M, Kim YS. Phosphatidylserine-dependent neuroprotective signaling promoted by docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 2010; 82: 165–172. [CrossRef] [PubMed] [Google Scholar]
  • Kim HY, Lee J, Moon HS, et al. Metabolism of docosahexaenoic acid to N -docosahexaenoylethanolamide in hippocampal neurodevelopment. Biochem J 2011; 435: 327–336. [CrossRef] [PubMed] [Google Scholar]
  • Kim HY, Spector AA, Xiong ZM. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins Other Lipid Med. (In Press). 2012. [Google Scholar]
  • Lands WEM. Metabolism of glycerolipids. J Biol Chem 1960; 235: 2233–7. [PubMed] [Google Scholar]
  • Moriguchi T, Greiner RS, Salem Jr N. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem 2000; 75: 2563–2573. [CrossRef] [PubMed] [Google Scholar]
  • Salem Jr N, Litman B, Kim HY, Gawrisch K. Mechanism of action of docosahexaenoic acid in the nervous system. Lipids 2001; 36: 945–959. [CrossRef] [PubMed] [Google Scholar]
  • Stokoe D, Macdonald SG, Cadwallader K, Symons K, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science 1994; 264: 1463–67; Correction (1994) Science 266: 1792–3. [CrossRef] [PubMed] [Google Scholar]
  • Vance JE. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 2008; 49: 1377–1387. [CrossRef] [PubMed] [Google Scholar]
  • Wen Z, Kim HY. Inhibition of phosphatidylserine biosynthesis by ethanol in developing rat brain. J Neurosci Res 2007; 85: 1568–1578. [CrossRef] [PubMed] [Google Scholar]
  • Willatts P, Forsyth JS, Di Modugno MK, Varma S, Colvin M. Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 1998; 352: 688–691. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.