Table 6
Main methodological issues and solutions to answer the question “Are there conflicts between performance indicators?”.
Methodological issues | Solutions | Actions |
---|---|---|
Should we use data collected at the plot level or at the block level? | Plot is the preferred statistical unit because it is the unit on which the measurements/observations were made and the most reliable for studying correlations. | |
How to study discrepancies between performance indicators? | Analyze non causal relationships between many variables. Multifactorial analyses are therefore appropriate. | Correlation analysis and Principal Component Analysis (PCA) in our case, since all indicators are quantitative. |
How to select variables/indicators that will be active variables in a multifactorial analysis? | Clearly draw the distinction between result variables/indicators (dependent variables) and explanatory variables/indicators (independent variables) describing: (i) cropping practices and (ii) the production situation. Remove from the dataset all redundant and unrelated indicators used in the analysis. |
|
How can we easily identify discrepancies and concordances between indicators when an increase in a performance indicator can mean either an improvement or a deterioration of the considered performance depending on the specific situation? | Transform indicators whose increase indicate a lower performance by adding a minus sign. Rename the transformed indicators. | We have added a minus sign in front of indicator values whose increase reveals a poorer performance. The names of these indicators begin with “m.” |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.