Issue |
OCL
Volume 31, 2024
Innovative Cropping Systems / Systèmes innovants de culture
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 26 | |
DOI | https://doi.org/10.1051/ocl/2023022 | |
Published online | 17 January 2024 |
- Agreste. 2019. Pratiques culturales en grandes cultures 2017. 30p. [Google Scholar]
- Aubertot JN, Robin MH. 2013. Injury profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. conceptual bases. PLoS One 8.9: e73202. https://doi.org/10.1371/journal.pone.0073202. [Google Scholar]
- Baayen RH, Davidson DJ, Bates DM. 2008. Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59: 390–412. https://doi.org/10.1016/j.jml.2007.12.005. [CrossRef] [Google Scholar]
- Beillouin D, Ben-Ari T, Makowski D. 2019. A dataset of meta-analyses on crop diversification at the global scale. Data in brief 24: 103898. https://doi.org/10.1016/j.dib.2019.103898. [CrossRef] [PubMed] [Google Scholar]
- Bianconi A, Dalgaard T, Manly BFJ et al., 2013. Methodological difficulties of conducting agroecological studies from a statistical perspective. Agroecol Sustain Food Syst 37: 485–506. https://doi.org/10.1080/10440046.2012.712941. [CrossRef] [Google Scholar]
- Boiffin J, Malezieux E, Picard D. Cropping systems for the future. In Nösberger J, Geiger HH, Struik PC, eds. Crop science: Progress and prospects. Papers presented at the Third International Crop Science Congress, Hamburg, Germany 17–22 August 2000. CABI Publishing, 2001, pp. 261–279. [Google Scholar]
- Bonnet C, Gaudio N, Alletto L, et al., 2021. Design and multicriteria assessment of low-input cropping systems based on plant diversification in southwestern France. Agron Sustain Dev 41. https://doi.org/10.1007/s13593-021- 00719-7. [Google Scholar]
- Bourguet D, Guillemaud T. 2016. The hidden and external costs of pesticide use. In: Lichtfouse, E. (eds). Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_2 [Google Scholar]
- Breman H, de Wit CT. 1983. Rangeland productivity and exploitation in the Sahel. Science 221.4618: 1341–1347. https://doi.org/10.1126/science.221.4618.1341. [CrossRef] [PubMed] [Google Scholar]
- Brossier J, Contini C, Zorini LO, Cristóvão A. The origins of the European IFSA : the first meetings and the agenda renewal. In I. Darnhofer I., D. Gibbon D, eds. Farming Systems Research into the 21st Century: The New Dynamic. Springer Science & Business Media 2012, p 33–48. [CrossRef] [Google Scholar]
- Brühl CA, Zaller JG. 2019. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front Environ Sci 7: 177. https://doi.org/10.3389/fenvs.2019.00177. [CrossRef] [Google Scholar]
- Cadoux S, Sauzet G, Pruvot T, Flénet F. Diversification of cropping systems in a context of shallow soils : implementation and performances of both on-station and on-farm systems. In Messéan A, Drexler D, Heim I, Paresys L, Stilmant D, Willer H, eds. European Conference on Crop Diversification. INRA and ÖMKI Budapest, Hungary, 2019, pp. 39–40. [Google Scholar]
- Cady FB. 1991. Experimental design and data management of rotation experiments. Agron J 83: 50–56. https://doi.org/10.2134/agronj1991.00021962008300010014x. [CrossRef] [Google Scholar]
- Colnenne-David C, Grandeau G, Jeuffroy MH, Dore T. 2017. Ambitious environmental and economic goals for the future of agriculture are unequally achieved by innovative cropping systems. Field Crops Research 210: 114–128. https://doi.org/10.1016/j.fcr.2017.05.009. [CrossRef] [Google Scholar]
- Cros MJ, Aubertot JN, Gaba S, Reboud X, Sabbadin R, Peyrard N. 2021. Improving pest monitoring networks using a simulation-based approach to contribute to pesticide reduction. Theor Popul Biol 141: 24–33. https://doi.org/10.1016/J.TPB 2021. 06.002. [CrossRef] [PubMed] [Google Scholar]
- Dagnelie P. 2012. Principes d’expérimentation. Planification des expériences et analyse de leurs résultats. Gembloux, Belgique: Les Presses agronomiques de Gembloux, A.S.B.L. [Google Scholar]
- De’ath G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83: 1105–1117. [Google Scholar]
- Debaeke P, Munier-Jolain N, Bertrand M, Guichard L, Nolot JM, Saulas P. 2009. Agronony for Sustainable Development 29 (1) 73-86. 2009. Iterative design and evaluation of rule-based cropping systems: methodology and case studies. A review. https://doi.org/10.1051/agro:2008050 [Google Scholar]
- De Cordoue A-L., Toqué C, Cadoux S, et al. Syppre: synergy between experimental platforms, groups of farmers and observatory of current farming systems to support transition towards new cropping systems. In: Book of abstracts of the XV European Society for Agronomy Congress: “Innovative cropping and farming systems for high quality food production systems”, Genève: Agroscope, 2018. [Google Scholar]
- De Cordoue A, Cadoux S, Toqué C, et al. Co-design OF agro-ecological cropping systems combining global and local issues. In: Book of abstracts of the XIV European Society for Agronomy Congress: "Growing landscapes −Cultivating innovative agricultural systems", Edinburgh, Scotland, 2016. [Google Scholar]
- Deguine JP, Gloanec C, Laurent P, Ratnadass A, Aubertot, JN. Agroecological crop protection, Springer, 2017. [Google Scholar]
- Doré T, Bail M Le, Martin P, Ney B, Roger-Estrade J. 2006. L’agronomie aujourd’hui, Ed. Quae. [Google Scholar]
- Drinkwater LE, Wagoner P, Sarrantonio M. 1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396.6708: 262–265. [CrossRef] [Google Scholar]
- Dubois S, Tailleur A, Cadoux S, et al. Evaluation multicritère a priori pour aider à la conception de systèmes Syppre: Répondre aux défis de l’agriculture Concilier agronomie et écologie pour produire. In Colbach N, Angevin F, Bockstaller C, et al., eds. Projet COSAC Colloque final. hal-02791468, Paris, France 2019, pp. 36-38. [Google Scholar]
- Duchene O, Vian JF, Celette F. 2017. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric Ecosyst Environ 240: 148–161. https://doi.org/10.1016/J.AGEE 2017. 02.019. [Google Scholar]
- Duru M, Therond O, Martin G, et al., 2015. How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agron Sustain Dev 35: 1259–1281. https://doi.org/10.1007/s13593-015- 0306-1. [CrossRef] [Google Scholar]
- Elhakeem A, van der Werf F W, Bastiaans L. 2021. Radiation interception and radiation use efficiency in mixtures of winter cover crops. Field Crops Research 264: 108034. https://doi.org/10.1016/j.fcr.2020.108034. [CrossRef] [Google Scholar]
- FAO. 2019. Sustainable food and agriculture: an integrated approach, Academic Press. [Google Scholar]
- Federer WT. 1999. Statistical design and analysis for intercropping experiments volume II: three or more crops, New York: Springer. [Google Scholar]
- Florence AM, Higley LG, Drijber RA, Francis CA, Lindquist JL. 2019. Cover crop mixture diversity, biomass productivity, weed suppression, and stability. PLoS One 1–18. https://doi.org/10.1371/journal.pone.0206195. [Google Scholar]
- Florence AM, McGuire AM. 2020. Do diverse cover crop mixtures perform better than monocultures? A systematic review. Agron J 112: 3513–3534. https://doi.org/10.1002/agj2.20340. [CrossRef] [Google Scholar]
- Foley JA, Ramankutty N, Brauman KA, et al., 2011. Solutions for a cultivated planet. Nature 478: 337–342. https://doi.org/10.1038/nature10452. [CrossRef] [PubMed] [Google Scholar]
- Gaba S, Lescourret F, Boudsocq S, et al., 2014. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agron Sustain Dev 35.2: 607–623. https://doi.org/10.1007/s13593-014-0272-z. [Google Scholar]
- Gac A, Deltour L, Cariolle M, et al., 2010. GES’TIM. Guide méthodologique pour l’estimation des impacts des activités agricoles sur l’effet de serre. Version 1. 2. [Google Scholar]
- Gac A, Cariolle M, Deltour L, et al., 2011. GES’TIM − des apports pour l’évaluation environnementale des activités agricoles. Innovations Agronomiques, INRAE 17: 83–94. [Google Scholar]
- Godfray HCJ, Beddington JR, Crute IR, et al., 2010. Food security: the challenge of feeding 9 billion people. Science 327.5967: 812–819. https://doi.org/10.1126/science.1185383. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gomez KA, Gomez AA. 1984. Statistical procedure for agricultural research, 2nd ed. New York: John Wiley & Sons. [Google Scholar]
- Hallmann CA, Sorg M, Jongejans E, et al., 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12.10: e0185809. https://doi.org/10.1371/journal.pone.0185809. [CrossRef] [PubMed] [Google Scholar]
- IPCC. 2006. Guidelines for national greenhouse gas inventories. Volume 4. Agriculture, Forestry and Other Land Use. [Google Scholar]
- IPCC. 2019. Climate Change and Land. Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Summary for Policymakers. Geneve. [Google Scholar]
- Jensen ES, Peoples MB, Boddey RM, et al., 2012. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32.2: 329–364. https://doi.org/10.1007/s13593-011- 0056-7. [CrossRef] [Google Scholar]
- Joly D, Brossard T, Cardot H, Cavailhes J, Hilal M, Wavresky P. 2010. Les types de climats en France, une construction spatiale. CyberGeo : Eur J Geogr 501: 1–25. http://journals.openedition.org/cybergeo/23155 https://doi.org/10.4000/cybergeo.2315. [Google Scholar]
- Keichinger O, Viguier L, Corre-Hellou G, Messean A, Angevin F, Bockstaller C. 2021. Un indicateur évaluant la diversité globale des rotations: de la diversité des cultures aux services écosystémiques. AE&S 11-1: 1–14. [Google Scholar]
- Kudsk P, Jørgensen LN, Ørum JE. 2018. Pesticide load—a new Danish pesticide risk indicator with multiple applications. Land Use Policy 70: 384–393. https://doi.org/10.1016/j.landusepol.2017.11.010 [CrossRef] [Google Scholar]
- Lamanda N, Roux S, Delmotte S, et al., 2012. A protocol for the conceptualization of an agro-ecosystem to guide data acquisition and analysis and expert knowledge integration. Eur J Agron 38: 104–116. https://doi.org/10.1016/j.eja.2011.07.004. [CrossRef] [Google Scholar]
- Laurent P, Aubertot JN, Doré T, et al., 2017. Agroecological transition keys. In Deguine JP, Gloanec C, Laurent P,Ratnadass A, Aubertot, JN, eds. Agroecological Crop Protection. Springer, Dordrecht 2017, pp. 163–246. [Google Scholar]
- Le Gal PY, Dugué P, Faure G, Novak S. 2011. How does research address the design of innovative agricultural production systems at the farm level? A review. Agric Syst 104: 714–728. https://doi.org/10.1016/j.agsy.2011.07.007. [CrossRef] [Google Scholar]
- Lechenet M, Bretagnolle V, Bockstaller C, et al., 2014. Reconciling pesticide reduction with economic and environmental sustainability in arable farming. PLoS One 9.6: e97922. https://doi.org/10.1371/journal.pone.0097922. [CrossRef] [PubMed] [Google Scholar]
- Lechenet M, Deytieux V, Antichi D, et al., 2017. Diversity of methodologies to experiment Integrated Pest Management in arable cropping systems: analysis and reflections based on a European network. Eur J Agron 83: 86–99. [CrossRef] [Google Scholar]
- Lescourret F, Dutoit T, Rey F, Côte F, Hamelin M, Lichtfouse E. 2015. Agroecological engineering. Agron Sustain Dev 35: 1191–1198. https://doi.org/10.1007/s13593-015- 0335-9. [CrossRef] [Google Scholar]
- Lin BB. 2011. Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61: 183–193. https://doi.org/10.1525/bio.2011.61.3.4. [CrossRef] [Google Scholar]
- Liu C, Plaza-Bonilla D, Coulter JA, et al., 2022. Diversifying crop rotations enhances agroecosystem services and resilience. Adv Agron 1–37. https://doi.org/10.1016/bs.agron.2022.02.007. [Google Scholar]
- Malézieux E. 2012. Designing cropping systems from nature. Agron Sustain Dev 32: 15–29. https://doi.org/10.1007/s13593-011-0027-z. [CrossRef] [Google Scholar]
- Martin G, Martin-Clouaire R, Duru M. 2013. Farming system design to feed the changing world. A review. Agron Sustain Dev 33: 131–149. https://doi.org/10.1007/s13593-011- 0075-4. [CrossRef] [Google Scholar]
- Meynard JM, Dedieu B, Bos AP. Re-design and co-design of farming systems. An overview of methods and practices. In Darnhofer I, Gibbon D, Dedieu B, eds. Farming Systems Research into the 21st Century: The New Dynamic. Springer Science & Business Media,;1 2012, pp. 405–429. [CrossRef] [Google Scholar]
- Plaza-Bonilla D, Nolot JM, Raffaillac D, Justes E. 2017. Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur J Agron 82: 331–341. https://doi.org/10.1016/j.eja.2016.05.010. [CrossRef] [Google Scholar]
- R Core Team. 2020. R: A language and environment for statistical computing. [Google Scholar]
- Ratnadass A, Fernandes P, Avelino J, Habib R. 2012. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron Sustain Dev 32 : 273–303. https://doi.org/10.1007/s13593-011- 0022-4. [CrossRef] [Google Scholar]
- Reckling M, Bergkvist G, Watson CA, et al., 2016. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Front Plant Sci 7: 669. https://doi.org/10.3389/fpls.2016.00669. [CrossRef] [PubMed] [Google Scholar]
- Robertson GP, Swinton SM. 2005. Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front Ecol Environ 3.1: 38–46. [CrossRef] [Google Scholar]
- Rosa-Schleich J, Loos J, Mußhoff O, Tscharntke T. 2019. Ecological-economic trade-offs of diversified farming systems − A review. Ecol Econ 160: 251–263. https://doi.org/10.1016/J.ECOLECON 2019. 03.002. [CrossRef] [Google Scholar]
- Schiere JB, Lyklema J, Schakel J, Rickert KG. 1999. Evolution of farming systems and system philosophy. Syst Res Behav Sci 16.4: 375–390. https://doi.org/10.1002/(SICI)1099-1743(199907/08)16:4%3 C375: :AID-SRES254%3 E3. 0.CO;2-Q. [CrossRef] [Google Scholar]
- Schillinger WF. 2011. Practical lessons for successful long-term cropping systems experiments. Renew Agric Food Syst 26: 1–3. https://doi.org/10.1017/ S1742170510000359. [CrossRef] [Google Scholar]
- Schwarzenbach RP, Egli T, Hofstetter TB, et al., 2010. Global water pollution and human health. Annu Rev Environ Resour 35 : 109–136. https://doi.org/10.1146/annurev-environ- 100809-125342. [CrossRef] [Google Scholar]
- Sebillotte M. 1974. Agronomie et agriculture. Essai d’analyse des tâches de l’agronome. Cahiers de l’ORSTOM 24 : 3–25. [Google Scholar]
- Sebillotte M. 1990. Système de culture, un concept operatoire pour les agronomes. Les systèmes de culture. Un Point sur… INRA, 2-7380- 0256–0 [Google Scholar]
- Siegel S, Castellan, Jr., NJ. 1988. Nonparametric statistics for the behavioral sciences,;1; 2nd ed. New York: Mcgraw-Hill. [Google Scholar]
- Silva V, Mol HGJ, Zomer P, Tienstra M., Ritsema CJ., Geissen V. 2019. Pesticide residues in European agricultural soils − A hidden reality unfolded. Sci Total Environ 653 : 1532–1545. https://doi.org/10.1016/J.SCITOTENV 2018. 10.441. [CrossRef] [PubMed] [Google Scholar]
- Smith RG, Warren ND, Cordeau S. 2020. Are cover crop mixtures better at suppressing weeds than cover crop monocultures? Weed Sci 68 : 186–194. https://doi.org/10.1017/wsc.2020.12. [CrossRef] [Google Scholar]
- SSP - Agreste. 2019. Pratiques culturales en grandes cultures 2017 IFT et nombre de traitements. Paris, France. [En ligne] https://www.agreste.agriculture.gouv.fr/agreste-web/download/publication/publie/Chd1903/cd2019-3%20PK%20_%20janvier%202020%20v2. pdf [Google Scholar]
- Stanton RL, Morrissey CA, Clark RG. 2018. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ 254: 244–254. [CrossRef] [Google Scholar]
- Tauvel P, Cadoux S, Duval R, et al., Syppre: better reconciliation of global and local issues through innovative and diversified cropping systems. In Messéan A, Drexler D, Heim I, Paresys L, Stilmant D,Willer H, eds. European Conference on Crop Diversification. INRA and ÖMKI Budapest, Hungary, 2019, pp. 63–65. [Google Scholar]
- Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108: 20260–20264. https://doi.org/10.1073/PNAS 1116437108/-/DCSUPPLEMENTAL [CrossRef] [PubMed] [Google Scholar]
- Tilman D, Cassman KG, Matson PA, Naylor R., Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671–677. https://doi.org/10.1038/nature010141. [CrossRef] [PubMed] [Google Scholar]
- Toqué C, Cadoux S, Pierson P, et al., SYPPRE: a project to promote innovations in arable crop prodoction mobilizing farmers and stakeholders and including co-design, ex-ante evaluation and experimentation of multiservice farming systems matching with regional challenges. In: 5th International Symposium for Farming Systems Design. Agro2015, Montpellier, France, 2015. [Google Scholar]
- Vasilachi IC, Tapciuc L, Chelaru GMF, et al., Pesticides in the environment and harmonized risk indicators. In: 2020 International Conference on e-Health and Bioengineering (EHB) IEEE, 2020, pp. 1–4. [Google Scholar]
- Vereijken, P. H. (1997). A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. European Journal of Agronomy, 7(1-3), 235–250 [Google Scholar]
- Viguier L, Cavan N, Bockstaller C, et al., 2021. Combining diversification practices to enhance the sustainability of conventional cropping systems. Eur J Agron 127: 126279. https://doi.org/10.1016/j.eja.2021.126279. [CrossRef] [Google Scholar]
- Weber S, Jouy L, Angevin F, et al., SYSTERRE ®, an online tool to describe diversified cropping systems, to calculate their performances, and assess their sustainability. In Messéan A, Drexler D,Heim I, Paresys L, Stilmant D, Willer H, eds. European Conference on Crop Diversification. INRA and ÖMKI Budapest, Hungary, 2019, pp. 337–338. [Google Scholar]
- Zampieri M, Weissteiner CJ, Grizzetti B, Toreti A., van den Berg F M., Dentener F. 2020. Estimating resilience of crop production systems: From theory to practice. Sci Total Environ 735: 139378. https://doi.org/10.1016/j.scitotenv.2020.139378. [CrossRef] [PubMed] [Google Scholar]
- Zhang W, Ricketts TH, Kremen C, Carney K., Swinton S. M. 2007. Ecosystem services and dis-services to agriculture. Ecol Econ 64: 253–260. https://doi.org/10.1016/j.ecolecon.2007.02.024. [CrossRef] [Google Scholar]
- Zuur AF, Ieno EN, Walker NJ, Saveliev, AA., Smith, GM. 2009. Mixed effects models and extensions in ecology with R. New York: 1; Springer. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.