Open Access
Numéro
OCL
Volume 25, Numéro 4, July-August 2018
Numéro d'article A403
Nombre de pages 14
Section Nutrition - Health
DOI https://doi.org/10.1051/ocl/2018011
Publié en ligne 21 mai 2018
  • Andrade R. 2011. Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology 61: 382–386. [CrossRef] [PubMed] [Google Scholar]
  • Benolken RM, Anderson RE, Wheeler TG. 1973. Membrane fatty acids associated with the electrical response in visual excitation. Science 182(118): 1253–1254. [CrossRef] [Google Scholar]
  • Birch EE, Carlson SE, Hoffman DR, et al. 2010. The DIAMOND (DHA Intake And Measurement Of Neural Development) study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am J Clin Nutr 91(4): 848–859. [CrossRef] [PubMed] [Google Scholar]
  • Bloom M, Linseisen F, Lloyd-Smith J, Crawford MA. 1999. Insights from NMR on the functional role of polyunsaturated lipids in the brain. In : Maraviglia B, ed. Magnetic resonance and brain function − Approaches from Physics Proceedings of the 1998 Enrico Fermi International School of Physics, Varenna (Italy): Enrico Fermi Lecture, Course #139, pp. 1–27. [Google Scholar]
  • Broadhurst CL, Schmidt WT, Nguyena JK, et al. 2017. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from 100° to 10 °C. J Chemphyslip 03.002 0009-3084. [Google Scholar]
  • Carhart-Harris RL, Roseman L, Bolstridge Mark, et al. 2017. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Scientific Reports 7: 13187. DOI: 10.1038/s41598-017-13282-7. [CrossRef] [PubMed] [Google Scholar]
  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. 2001. Nuclear receptors and lipid physiology: opening the X-files. Science 294: 1866–1870. [CrossRef] [Google Scholar]
  • Crawford MA, Hassam AG, Williams G, Whitehouse WL. 1976. Essential fatty acids and fetal brain growth. LANCET i: 452–453. [CrossRef] [Google Scholar]
  • Crawford MA, Thabet M, Wang Y. 2018. An introduction to a theory on the role of π-electrons of docosahexaenoic acid in brain function. OCL. DOI: 10.1051/ocl/2018010. [Google Scholar]
  • Crawford MA, Broadhurst CL, Guest M, et al. 2013. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signaling throughout evolution. Prostaglandins Leukot Essent Fatty Acids (PLEFA) 88(1): 5–13. DOI: 10.1016/j.plefa.2012.08.005. PMID: 23206328. [CrossRef] [Google Scholar]
  • Diau G-Y, Hsieh AT, Sarkadi-Nagy EA, et al. 2005. The influence on long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system. BMC Medicine 3: 11 [CrossRef] [PubMed] [Google Scholar]
  • Gawrisch K, Eldho NV, Holte LL. 2003. The structure of DHA in phospholipid membranes. Lipids 38(4): 445–452. [CrossRef] [PubMed] [Google Scholar]
  • Hameroff S, Penrose R. 1998. Quantum computation in brain microtubules The Penrose- Hameroff ‘Orch OR’ model of consciousness, Phil Trans R Soc Lond A 356: 1869–1896. [CrossRef] [Google Scholar]
  • Hameroff S, Penrose R. 2014. Consciousness in the universe: a review of the ’Orch OR’ theory. Phys Life Rev 11(1): 39–78. DOI: 10.1016/j.plrev.2013.08.002. Epub 2013. PMID: 24070914 [CrossRef] [Google Scholar]
  • Harris JJ, Jolivet R, Attwell D. 2012. Synaptic energy use and supply. DOI: 10.1016/j.neuron.2012.08.019. [Google Scholar]
  • Hopfield JJ. 1974. Electron transfer between biological molecules by thermally activated tunneling. Proceedings of the National Academy of Sciences USA 71: 3640–3644. [CrossRef] [Google Scholar]
  • Huxley A. 1954. The doors of perception, (The Gates of Heaven and Hell), London: Chatto and Windus. [Google Scholar]
  • Kitajka K, Sinclair AJ, Weisinger RS, et al. 2004. Effects of dietary ω-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci USA 101(30): 10931–10936. [CrossRef] [Google Scholar]
  • Marr D. 1982. Vision: a computational investigation into the human representation and processing of visual information, vol. XVII. San Francisco, CA: W. H. Freeman. [Google Scholar]
  • Merzenich MM, Van Vleet TM, Nahum M. 2014. Brain plasticity-based therapeutics. Front Hum Neurosci 8(385): 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Neuringer M, Connor WE, Van Petten C, Barstad L. 1984. Dietary ω-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 73(1):272–276. [CrossRef] [PubMed] [Google Scholar]
  • O’Reilly EJ, Olaya-Castro A. 2014. Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat Commun 5: 3012. DOI: 10.1038/ncomms4012. PMID: 24402469 [CrossRef] [PubMed] [Google Scholar]
  • Purdon AD, Rapoport SI. 2007. Energy consumption by phospholipid metabolism in mammalian brain. In : Gibsson G, Dienelm G, eds. Handbook of Neurochemistry and Molecular Neurobiology. New York (USA): Springer, pp. 401–427. [Google Scholar]
  • Reimann MW, Nolte M, Scolamiero M, et al. 2017. Cliques of neurons bound into cavities provide a missing link between structure and function. Front Comput Neurosci 11: 48. DOI: 10.3389/fncom.2017.00048. [CrossRef] [PubMed] [Google Scholar]
  • Rodriguez de Turco EB, Parkins N, Ershov AV, Bazan NG. 1999. Selective retinal pigment epithelial cell lipid metabolism and remodeling conserves photoreceptor docosahexaenoic acid following phagocytosis. J Neurosci Res 57(4): 479–486. [CrossRef] [PubMed] [Google Scholar]
  • Scholes GD, Fleming GR, Chen LX, et al. 2017. Using coherence to enhance function in chemical and biophysical systems. Nature 543(7647): 647–656. DOI: 10.1038/nature21425. [CrossRef] [PubMed] [Google Scholar]
  • Suzuki H, Manabe S, Wada O, Crawford MA. 1997. Rapid incorporation of docosahexaenoic acid from dietary sources into brain microsomal, synaptosomal and mitochondrial membranes in adult mice. Internat J Vit Res 67: 272–278. [Google Scholar]
  • Valk SL, Bernhardt BC, Trautwein FM, et al. 2017. Structural plasticity of the social brain: differential change after socio-affective and cognitive mental training. Sci Adv 3(10): e1700489. DOI: 10.1126/sciadv.1700489. [CrossRef] [PubMed] [Google Scholar]
  • Williams RW, Herrup K. 1988. The control of neuron number. Ann Rev Neurosci 11(1): 423–453. DOI: 10.1146/annurev.ne.11.030188.002231. PMID 3284447. [CrossRef] [Google Scholar]
  • Willshaw DJ, Dayan P, Morris RGM. 1971. Memory, modelling and Marr: a commentary on Marr ‘Simple memory: a theory of archicortex’. Phil Trans R Soc B 370: 20140383. [CrossRef] [Google Scholar]
  • Woollett K, Maguire EA. 2011. Acquiring “the Knowledge” of London’s layout drives structural brain changes. Curr Biol 21(24-2): 2109–2114. DOI: 10.1016/j.cub.2011.11.018. PMCID: PMC3268356. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.