Open Access
Volume 23, Numéro 1, January-February 2016
Numéro d'article D108
Nombre de pages 6
Section Dossier: Lipids and Brain / Lipides et cerveau
Publié en ligne 2 octobre 2015
  • Abbadi A, Domergue F, Bauer J, et al. 2004. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16: 2734–2748. [CrossRef] [PubMed] [Google Scholar]
  • Abe K, Aoki M, Kawagoe J, et al. 1995. Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke 26: 1478–1489. [CrossRef] [PubMed] [Google Scholar]
  • Bedford MT. 2007. Arginine methylation at a glance. J. Cell Sci. 120: 4243–4246. [CrossRef] [PubMed] [Google Scholar]
  • Bedford MT, Richard S. 2005. Arginine methylation an emerging regulator of protein function. Mol. Cell 18: 263–272. [CrossRef] [PubMed] [Google Scholar]
  • Bedford MT, Clarke SG. 2009. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33: 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Blondeau N, Petrault O, Manta S, et al. 2007. Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ. Res. 101: 176–184. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Bode-Boger SM, Scalera F, Ignarro LJ. 2007. The L-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratio. Pharmacol. Ther. 114: 295–306. [CrossRef] [PubMed] [Google Scholar]
  • Brizzolara-Gourdie A, Webb JG. 1997. Angiotensin II potentiates vasodilation of rat aorta by cAMP elevating agonists. J. Pharmacol. Exp. Ther. 281: 354–359. [PubMed] [Google Scholar]
  • Brown GC, Borutaite V. 2006. Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem. Soc. Trans. 34: 953–956. [CrossRef] [PubMed] [Google Scholar]
  • Colbourne F, Li H, Buchan AM, Clemens JA. 1999. Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke 30: 662–668. [CrossRef] [PubMed] [Google Scholar]
  • Geocadin RG, Koenig MA, Jia X, Stevens RD, Peberdy MA. 2008. Management of brain injury after resuscitation from cardiac arrest. Neurol. Clin. 26: 487–506. [CrossRef] [PubMed] [Google Scholar]
  • Go AS, Mozaffarian D, Roger VL, et al. 2014. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation 129: e28–e292. [CrossRef] [PubMed] [Google Scholar]
  • Guzauskas GF, Boudreau DM, Villa KF, Levine SR, Veenstra DL. 2012. The cost-effectiveness of primary stroke centers for acute stroke care. Stroke 43: 1617–1623. [CrossRef] [PubMed] [Google Scholar]
  • Huang L, Applegate PM, Gatling JW, et al. 2014. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection). Med. Gas. Res. 4: 10. [CrossRef] [PubMed] [Google Scholar]
  • Jamieson DG. 2009. Diagnosis of ischemic stroke. Am. J. Med. 122: S14–20. [CrossRef] [PubMed] [Google Scholar]
  • Jung CS, Iuliano BA, Harvey-White J, et al. 2004. Association between cerebrospinal fluid levels of asymmetric dimethyl-L-arginine, an endogenous inhibitor of endothelial nitric oxide synthase, and cerebral vasospasm in a primate model of subarachnoid hemorrhage. J. Neurosurg. 101: 836–842. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kochanek PM, Jackson TC, Ferguson NM, et al. 2015. Emerging therapies in traumatic brain injury. Semin. Neurol. 35: 83–100. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Koob AO, Duerstock BS, Babbs CF, Sun Y, Borgens RB. 2005. Intravenous polyethylene glycol inhibits the loss of cerebral cells after brain injury. J. Neurotrauma 22: 1092–1111. [CrossRef] [PubMed] [Google Scholar]
  • Koob AO, Colby JM, Borgens RB. 2008. Behavioral recovery from traumatic brain injury after membrane reconstruction using polyethylene glycol. J. Biol. Eng. 2: 9. [CrossRef] [PubMed] [Google Scholar]
  • Lee YC, Chang HH, Liu CH, et al. 2010. Methyl palmitate: a potent vasodilator released in the retina. Invest. Ophthalmol. Vis. Sci. 51: 4746–4753. [CrossRef] [PubMed] [Google Scholar]
  • Lee RH, Liu YQ, Chen PY, et al. 2011a. Sympathetic {alpha}3{beta}2-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine. Am. J. Physiol. Heart Circ. Physiol. 301: H344–354. [CrossRef] [PubMed] [Google Scholar]
  • Lee TJ, Chang HH, Lee HC, et al. 2011b. Axo-axonal interaction in autonomic regulation of the cerebral circulation. Acta. Physiol. 203: 25–35. [CrossRef] [Google Scholar]
  • Lee YC, Chang HH, Chiang CL, et al. 2011c. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation 124: 1160–1171. [CrossRef] [PubMed] [Google Scholar]
  • Lee RH, Tseng TY, Wu CY, et al. 2012. Memantine Inhibits alpha3beta2-nAChRs-Mediated Nitrergic Neurogenic Vasodilation in Porcine Basilar Arteries. PLoS One 7: e40326. [CrossRef] [PubMed] [Google Scholar]
  • Leiper J, Nandi M, Torondel B, et al. 2007. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat. Med. 13: 198–203. [CrossRef] [PubMed] [Google Scholar]
  • Lin HW, Perez-Pinzon M. 2013. The role of fatty acids in the regulation of cerebral vascular function and neuroprotection in ischemia. CNS Neurol. Disord. Drug Targets 12: 316–324. [CrossRef] [PubMed] [Google Scholar]
  • Lin HW, Liu CZ, Cao D, et al. 2008. Endogenous methyl palmitate modulates nicotinic receptor-mediated transmission in the superior cervical ganglion. Proc. Natl. Acad. Sci. USA 105: 19526–19531. [CrossRef] [Google Scholar]
  • Lin HW, Saul I, Gresia VL, et al. 2014. Fatty acid methyl esters and Solutol HS 15 confer neuroprotection after focal and global cerebral ischemia. Transl. Stroke Res. 5: 109–117. [CrossRef] [PubMed] [Google Scholar]
  • Liu-Snyder P, Logan MP, Shi R, Smith DT, Borgens RB. 2007. Neuroprotection from secondary injury by polyethylene glycol requires its internalization. J. Exp. Biol. 210: 1455–1462. [CrossRef] [PubMed] [Google Scholar]
  • Manole MD, Foley LM, Hitchens TK, et al. 2009. Magnetic resonance imaging assessment of regional cerebral blood flow after asphyxial cardiac arrest in immature rats. J. Cereb. Blood Flow Metab. 29: 197–205. [CrossRef] [PubMed] [Google Scholar]
  • Miller CL, Alexander K, Lampard DG, Brown WA, Griffiths R. 1980. Local cerebral blood flow following transient cerebral ischemia. II. Effect of arterial PCO2 on reperfusion following global ischemia. Stroke 11: 542–548. [CrossRef] [PubMed] [Google Scholar]
  • Murphy S, Gibson CL. 2007. Nitric oxide, ischaemia and brain inflammation. Biochem. Soc. Trans. 35: 1133–1137. [CrossRef] [PubMed] [Google Scholar]
  • Pluta RM, Oldfield EH. 2007. Analysis of nitric oxide (NO) in cerebral vasospasm after aneursymal bleeding. Rev. Recent Clin. Trials 2: 59–67. [CrossRef] [PubMed] [Google Scholar]
  • Raichle ME. 1983. The pathophysiology of brain ischemia. Ann. Neurol. 13: 2–10. [CrossRef] [PubMed] [Google Scholar]
  • Rodrigo J, Fernandez AP, Serrano J, Peinado MA, Martinez A. 2005. The role of free radicals in cerebral hypoxia and ischemia. Free Radic. Biol. Med. 39: 26–50. [CrossRef] [PubMed] [Google Scholar]
  • Ryan TA. 1999. Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J. Neurosci. 19: 1317–1323. [PubMed] [Google Scholar]
  • Saatman KE, Bozyczko-Coyne D, Marcy V, Siman R, McIntosh TK. 1996. Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J. Neuropathol. Exp. Neurol. 55: 850–860. [CrossRef] [PubMed] [Google Scholar]
  • Sabri M, Lass E, Macdonald RL. 2013. Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res. Treat. 2013: 394036. [PubMed] [Google Scholar]
  • Sarti C, Pantoni L, Bartolini L, Inzitari D. 2002. Cognitive impairment and chronic cerebral hypoperfusion: what can be learned from experimental models. J. Neurol. Sci. 203–204: 263–266. [CrossRef] [PubMed] [Google Scholar]
  • Stub D, Bernard S, Duffy SJ, Kaye DM. 2011. Post cardiac arrest syndrome: a review of therapeutic strategies. Circulation 123: 1428–1435. [CrossRef] [PubMed] [Google Scholar]
  • Sun DA, Deshpande LS, Sombati S, et al. 2008. Traumatic brain injury causes a long-lasting calcium (Ca2+)-plateau of elevated intracellular Ca levels and altered Ca2+ homeostatic mechanisms in hippocampal neurons surviving brain injury. Eur. J. Neurosci. 27: 1659–1672. [CrossRef] [PubMed] [Google Scholar]
  • Takizawa S, Aratani Y, Fukuyama N, et al. 2002. Deficiency of myeloperoxidase increases infarct volume and nitrotyrosine formation in mouse brain. J. Cereb. Blood Flow Metab. 22: 50–54. [CrossRef] [PubMed] [Google Scholar]
  • Tegos TJ, Kalodiki E, Sabetai MM, Nicolaides AN. 2000. Stroke: pathogenesis, investigations, and prognosis–Part II of III. Angiology 51: 885–894. [CrossRef] [PubMed] [Google Scholar]
  • The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. 1995. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333: 1581–1587. [Google Scholar]
  • Wang JY, Xia Q, Chu KT, et al. 2011. Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J. Neuropathol. Exp. Neurol. 70: 314–322. [CrossRef] [PubMed] [Google Scholar]
  • Wardlaw JM, Murray V, Berge E, del Zoppo GJ., 2014. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst. Rev. 7: CD000213. [PubMed] [Google Scholar]
  • Wei H, Mundade R, Lange KC, Lu T. 2014. Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle 13: 32–41. [CrossRef] [PubMed] [Google Scholar]
  • Werner C, Engelhard K. 2007. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 99: 4–9. [CrossRef] [PubMed] [Google Scholar]
  • Wolf SS, 2009. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol. Life Sci. 66: 2109–2121. [CrossRef] [PubMed] [Google Scholar]
  • Wu CY, Lee RH, Chen PY, et al. 2014. L-type calcium channels in sympathetic alpha3beta2-nAChR-mediated cerebral nitrergic neurogenic vasodilation. Acta Physiol. 211: 544–558. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.