Open Access
Volume 28, 2021
Article Number 41
Number of page(s) 9
Section Nutrition - Health
Published online 30 July 2021
  • Afssa. 2005. Risques et bénéfices pour la santé des acides gras trans apportés par les aliments. Afssa, p. 221. [Google Scholar]
  • Afssa. 2009. Avis de l’Agence française de sécurité sanitaire des aliments sur l’estimation des apports en acides gras trans de la population française S.n. 2007-SA-0220, ed. Afssa. [Google Scholar]
  • Alvarado K, Durand E, Vaysse L, et al. 2021. Effets bénéfiques potentiels des acides gras furaniques, des lipides alimentaires bioactifs-Potential beneficial effects of furan fatty acids, bioactive food lipids. Cah Nutr Diet 56: 117–125. [Google Scholar]
  • Arab L. 2003. Biomarkers of fat and fatty acid intake. J Nutr 133(Suppl. 3): 925S–932S. [Google Scholar]
  • Batna A, Scheinkonig J, Spiteller G. 1993. The occurrence of furan fatty acids in Isochrysis sp. and Phaeodactylum tricornutum. Biochim Biophys Acta 1166: 171–176. [Google Scholar]
  • Belury M.A. 1995. Conjugated dienoic linoleate: a polyunsaturated fatty acid with unique chemoprotective properties. Nutr Rev 53: 83–89. [Google Scholar]
  • Benlebna M, Balas L, Bonafos B, et al. 2020a. Long-term intake of 9-PAHPA or 9-OAHPA modulates favorably the basal metabolism and exerts an insulin sensitizing effect in obesogenic diet-fed mice. Eur J Nutr. [Google Scholar]
  • Benlebna M, Balas L, Bonafos B, et al. 2020b. Long-term high intake of 9-PAHPA or 9-OAHPA increases basal metabolism and insulin sensitivity but disrupts liver homeostasis in healthy mice. J Nutr Biochem 79: 108361. [Google Scholar]
  • Benlebna M, Balas L, Pessemesse L, et al. 2020c. FAHFAs Regulate the Proliferation of C2C12 Myoblasts and Induce a Shift toward a More Oxidative Phenotype in Mouse Skeletal Muscle. Int J Mol Sci 21. [Google Scholar]
  • Benlebna M, Balas L, Gaillet S, et al. 2021. Potential physio-pathological effects of branched fatty acid esters of hydroxy fatty acids. Biochimie 182: 13–22. [Google Scholar]
  • Boue C, Combe N, Billeaud C, et al. 2000. Trans fatty acids in adipose tissue of French women in relation to their dietary sources. Lipids 35: 561–566. [Google Scholar]
  • Brejchova K, Balas L, Paluchova V, Brezinova M, Durand T, Kuda O. 2020. Understanding FAHFAs: From structure to metabolic regulation. Prog Lipid Res 79: 101053. [Google Scholar]
  • Dai J, Yi J, Zhang S, et al. 2019. Serum 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid is associated with lipid profiles and might protect against non-alcoholic fatty liver disease in Chinese individuals. J Diabetes Investig 10: 793–800. [Google Scholar]
  • Dasagrandhi C. Ellamar JB, Kim YS, Kim HR. 2016. Antimicrobial activity of a novel furan fatty acid, 7, 10-epoxyoctadeca-7, 9-dienoic acid against methicillin-resistant Staphylococcus aureus. Food Sci Biotechnol 25: 1671–1675. [Google Scholar]
  • Drouin G. 2018. Métabolisme et intérêt nutritionnel de l’acide docosapentaénoïque n-3. Modulation du statut tissulaire en acides gras n-3 par les lipides laitiers alimentaires chez le rat. Rennes 1. [Google Scholar]
  • Drouin G, Catheline D, Guillocheau E, et al. 2019a. Comparative effects of dietary n-3 docosapentaenoic acid (DPA), DHA and EPA on plasma lipid parameters, oxidative status and fatty acid tissue composition. J Nutr Biochem 63: 186–196. [Google Scholar]
  • Drouin G, Rioux V, Legrand P. 2019b. The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family. Biochimie 159: 36–48. [Google Scholar]
  • Fremann D, Linseisen J, Wolfram G. 2002. Dietary conjugated linoleic acid (CLA) intake assessment and possible biomarkers of CLA intake in young women. Public Health Nutr 5: 73–80. [Google Scholar]
  • Fuchs CT, Spiteller G. 1999. 9-(3, 4-Dimethyl-5-pentyl-furan-2-yl) nonanoic Acid and 9-(3, 4-DimethyI-5-propyl-furan-2-yl) nonanoic Acid: New Naturally Occurring Peroxidase Inhibitors. Z Naturforsch 54: 932–936. [Google Scholar]
  • Ghasemi Fard S, Cameron-Smith D, Sinclair AJ. 2021. n-3 Docosapentaenoic acid: the iceberg n-3 fatty acid. Curr Opin Clin Nutr Metab Care 24: 134–138. [Google Scholar]
  • Glass RL, Krick TP, Echardt AE. 1974. New series of fatty acids in northern pike (Esox lucius). Lipids 9: 1004–1008. [Google Scholar]
  • Gowda SGB, Fuda H, Tsukui T, Chiba H, Hui, SP. 2020a. Discovery of eicosapentaenoic acid esters of hydroxy fatty acids as potent Nrf2 activators. Antioxidants 9. [Google Scholar]
  • Gowda SGB, Liang C, Gowda D, et al. 2020b. Identification of short chain fatty acid esters of hydroxy fatty acids (SFAHFAs) in murine model by nontargeted analysis using ultra-high-performance liquid chromatography/linear trap quadrupole-Orbitrap mass spectrometry. Rapid Commun Mass Spectrom. [Google Scholar]
  • Gowda SGB, Gowda D, Liang C, et al. 2020c. Chemical Labeling Assisted Detection and Identification of Short Chain Fatty Acid Esters of Hydroxy Fatty Acid in Rat Colon and Cecum Contents. Metabolites 10. [Google Scholar]
  • Graff G, Gellerman JL, Sand DM, Schlenk H. 1984. Inhibition of blood platelet aggregation by dioxo-ene compounds. Biochim Biophys Acta 799: 143–150. [Google Scholar]
  • Guillocheau E, Legrand P, Riou V. 2019. Benefits of natural dietary trans fatty acids towards inflammation, obesity and type 2 diabetes: defining the n-7 trans fatty acid family. OCL 26: 9. [EDP Sciences] [Google Scholar]
  • Guo XF, Tong WF, Ruan Y, Sinclair AJ, Li D. 2020. Different metabolism of EPA, DPA and DHA in humans: A double-blind cross-over study. Prostaglandins Leukot Essent Fatty Acids 158: 102033. [Google Scholar]
  • Gurr MI, Harwood JL, Frayn KN. 2002. Lipid Biochemistry. 5th ed. Blackwell Sciences. [Google Scholar]
  • Guth H, Grosch W. 1991. Detection of furanoid fatty acids in soya-bean oil − cause for the light-induced off-flavour. Eur J Lipid Sci Technol 93: 249–255. [Google Scholar]
  • Hammarstedt A, Graham TE, Kahn BB. 2012. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells. Diabetol Metab Syndr 4: 42. [Google Scholar]
  • Hammarstedt A, Syed I, Vijayakumar A, et al. 2018. Adipose tissue dysfunction is associated with low levels of the novel Palmitic Acid Hydroxystearic Acids. Sci Rep 8: 15757. [Google Scholar]
  • Hannemann K, Puchta V, Simon E, Ziegler H, Ziegler G, Spiteller G. 1989. The common occurrence of furan fatty acids in plants. Lipids 24: 296–298. [Google Scholar]
  • Kaur G, Guo XF, Sinclair AJ. 2016. Short update on docosapentaenoic acid: a bioactive long-chain n-3 fatty acid. Curr Opin Clin Nutr Metab Care 19: 88–91. [Google Scholar]
  • Khan MA, Pace-Asciak C, Al-Hassan JM, et al. 2018. Furanoid F-Acid F6 Uniquely Induces NETosis Compared to C16 and C18 Fatty Acids in Human Neutrophils. Biomolecules 8: 144–161. [Google Scholar]
  • Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. 2020. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 100: 171–210. [Google Scholar]
  • Kimura T, Tajima A, Inahashi Y, et al. 2018. Mumiamicin: Structure and bioactivity of a new furan fatty acid from Mumia sp. YSP-2-79. J Gen Appl Microbiol 64: 62–67. [Google Scholar]
  • Knechtle P, Diefenbacher M, Greve KB, et al. 2014. The natural diyne-furan fatty acid EV-086 is an inhibitor of fungal delta-9 fatty acid desaturation with efficacy in a model of skin dermatophytosis. Antimicrob Agents Chemother 58: 455–466. [Google Scholar]
  • Kolar MJ, Konduri S, Chang T, et al. 2019. Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. J Biol Chem 294: 10698–10707. [Google Scholar]
  • Kuda O, Brezinova M, Rombaldova M, et al. (2016). Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties. Diabetes 65: 2580–2590. [Google Scholar]
  • Kuda O, Brezinova M, Silhavy J, et al. 2018. Nrf2-mediated antioxidant defense and peroxiredoxin 6 are linked to biosynthesis of palmitic acid ester of 9-hydroxystearic acid. Diabetes 67: 1190–1199. [Google Scholar]
  • Lauvai J, Becker AK, Lehnert K, Schumacher M, et al. 2019. The furan fatty acid 9m5 acts as a partial ligand to peroxisome proliferator-activated receptor gamma and enhances adipogenesis in 3T3-L1 preadipocytes. Lipids 54: 277–288. [Google Scholar]
  • Lee J, Moraes-Vieira PM, Castoldi A, et al. 2016. Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses. J Biol Chem 291: 22207–22217. [Google Scholar]
  • Lehnen TE, da Silva MR, Camacho A, Marcadenti A, Lehnen AM. 2015. A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism. J Int Soc Sports Nutr 12: 36. [Google Scholar]
  • Lengler I, Buhrke T, Scharmach E, Lampen A. 2012. In-vitro toxicological and proteomic analysis of furan fatty acids which are oxidative metabolites of conjugated linoleic acids. Lipids 47: 1085–1097. [Google Scholar]
  • Leray C. 2013. Les lipides. Nutrition et santé. Lavoisier. [Google Scholar]
  • Liberati-Cizmek AM, Bilus M, Brkic AL, et al. 2019) Analysis of Fatty Acid Esters of Hydroxyl Fatty Acid in Selected Plant Food. Plant Foods Hum Nutr 74: 235–240. [Google Scholar]
  • Masuchi Buscato MH, Muller F, Vetter W, Weiss J, Salminen H. 2020. Furan fatty acids in enriched omega-3 fish oil: Oxidation kinetics with and without added monomethyl furan fatty acid as potential natural antioxidant. Food Chem 327: 127087. [Google Scholar]
  • Mohan H, Brandt SL, Kim JH, et al. 2019. 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) prevents high fat diet-induced insulin resistance via maintenance of hepatic lipid homeostasis. Diabetes Obes Metab 21: 61–72. [Google Scholar]
  • Moraes-Vieira PM, Saghatelian A, Kahn BB. 2016. GLUT4 Expression in Adipocytes Regulates De Novo Lipogenesis and Levels of a Novel Class of Lipids With Antidiabetic and Anti-inflammatory Effects. Diabetes 65: 1808–1815. [Google Scholar]
  • Okada Y, Kaneko M, Okajima H. 1996. Hydroxyl radical scavenging activity of naturally occurring furan fatty acids. Biol Pharm Bull 19: 1607–1610. [Google Scholar]
  • Okada Y, Okajima H, Konishi H, 1990. Antioxidant effect of naturally occurring furan fatty acids on oxidation of linoleic acid in aqueous dispersion. JAOCS 67: 858–862. [Google Scholar]
  • Oteng AB, Kersten S. 2020. Mechanisms of Action of trans Fatty Acids. Adv Nutr 11: 697–708. [Google Scholar]
  • Pakiet A, Wilczynski M, Rostkowska O, et al. 2020. The Effect of One Anastomosis Gastric Bypass on Branched-Chain Fatty Acid and Branched-Chain Amino Acid Metabolism in Subjects with Morbid Obesity. Obes Surg 30: 304–312. [Google Scholar]
  • Parodi P.W. 2003. Conjugated linoleic acid in food. In: Sebedio JL, Christie WW, Adlof R, eds. Advances in conjugated linoleic acid research. Champaign: AOCS Press, pp. 101–122. [Google Scholar]
  • Pham TH, Vidal NP, Manful CF. 2019. Moose and Caribou as Novel Sources of Functional Lipids: Fatty Acid Esters of Hydroxy Fatty Acids, Diglycerides and Monoacetyldiglycerides. Molecules 24: 232–247. [Google Scholar]
  • Prentice KJ, Wendell SG, Liu Y, et al. 2018. CMPF, a Metabolite Formed Upon Prescription Omega-3-Acid Ethyl Ester Supplementation, Prevents and Reverses Steatosis. EBio Med 27: 200–213. [Google Scholar]
  • Qiu B, Wang Q, Liu W, et al. 2018. Biological effects of trans fatty acids and their possible roles in the lipid rafts in apoptosis regulation. Cell Biol Int 42: 904–912. [Google Scholar]
  • Ran-Ressler R.R, Bae S, Lawrence P, Wang DH, Brenna JT. 2014. Branched-chain fatty acid content of foods and estimated intake in the USA. Br J Nutr 112: 565–572. [Google Scholar]
  • Ran-Ressler RR, Sim D, O’Donnell-Megaro AM, Bauman DE, Barbano DM, Brenna JT. 2011. Branched chain fatty acid content of United States retail cow’s milk and implications for dietary intake. Lipids 46: 569–576. [Google Scholar]
  • Richter CK, Bisselou KS, Nordgren TM. 2019. n-3 Docosapentaenoic Acid Intake and Relationship with Plasma Long-Chain n-3 Fatty Acid Concentrations in the United States: NHANES 2003–2014. Lipids 54: 221–230. [Google Scholar]
  • Ritzenthaler KL, McGuire MK, Falen R, Shultz TD, Dasgupta N, McGuire MA. 2001. Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J Nutr 131: 1548–1554. [Google Scholar]
  • Rodriguez JP, Guijas C, Astudillo AM, Rubio JM, Balboa MA, Balsinde J. 2019. Sequestration of 9-Hydroxystearic Acid in FAHFA (Fatty Acid Esters of Hydroxy Fatty Acids) as a Protective Mechanism for Colon Carcinoma Cells to Avoid Apoptotic Cell Death. Cancers 11. [Google Scholar]
  • Smith U, Kahn BB. 2016. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med 280: 465–475. [Google Scholar]
  • Spiteller G. 2005. The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis. Mol Nutr Food Res 49: 999–1013. [Google Scholar]
  • Syed I, Lee J, Moraes-Vieira PM, et al. 2018. Palmitic Acid Hydroxystearic Acids Activate GPR40, Which Is Involved in Their Beneficial Effects on Glucose Homeostasis. Cell Metab 27: 419–427 e414. [Google Scholar]
  • Tan D, Ertunc ME, Konduri S, et al. 2019. Discovery of FAHFA-Containing Triacylglycerols and Their Metabolic Regulation. J Am Chem Soc 141: 8798–8806. [Google Scholar]
  • Taormina VM, Unger AL, Schiksnis MR, Torres-Gonzalez M, Kraft J. 2020. Branched-Chain Fatty Acids-An Underexplored Class of Dairy-Derived Fatty Acids. Nutrients 12: 28756–22872. [Google Scholar]
  • Tovar J, de Mello VD, Nilsson A, et al. 2017. Reduction in cardiometabolic risk factors by a multifunctional diet is mediated via several branches of metabolism as evidenced by nontargeted metabolite profiling approach. Mol Nutr Food Res 61. [Google Scholar]
  • Vetter W, Laure S, Wendlinger C, Mattes A, Smith AWT, Knight DW. 2012. Determination of Furan Fatty Acids in Food Samples. J Am Oil Chem Soc 89: 1501–1508. [Google Scholar]
  • von Schacky C, Harris WS. 2018. Why docosapentaenoic acid is not included in the Omega-3 Index. Prostaglandins Leukot Essent Fatty Acids 135: 18–21. [Google Scholar]
  • Wahl HG, Liebich HM, Hoffmann A. 1994. Identification of fatty acid methyl esters as minor components of fish oil by multidimensional GC-MSD: New furan fatty acids. J Separation Sci 17: 308–311. [Google Scholar]
  • Wakimoto T, Kondo H, Nii H, et al. 2011. Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus. Proc Natl Acad Sci U S A 108: 17533–17537. [Google Scholar]
  • Wallace M, Green CR, Roberts LS, et al. 2018. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat Chem Biol 14: 1021–1031. [Google Scholar]
  • Wang D. 2017. Branched chain fatty acids (BCFA) in nature: fish, fermented food and sea lion vernix caseosa R. Cornell University, 116 p. [Google Scholar]
  • Wang DH, Jackson JR, Twining C, et al. 2016. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States. J Agric Food Chem 64: 7512–7519. [Google Scholar]
  • Wang J, Han L, Wang D, Li P, Shahidi F. 2020a. Conjugated Fatty Acids in Muscle Food Products and Their Potential Health Benefits: A Review. J Agric Food Chem 68: 13530–13540. [Google Scholar]
  • Wang Y, Pritchard GJ, Kimber MC. 2020b. A General Convergent Strategy for the Synthesis of Tetra-Substituted Furan Fatty Acids (FuFAs). Eur JOC 2020: 2914–2922. [Google Scholar]
  • Wendlinger C, Vetter W. 2014. High concentrations of furan fatty acids in organic butter samples from the German market. J Agric Food Chem 62: 8740–8744. [Google Scholar]
  • Wu X, Hammond EG, White PJ, Fehr W. 1997. Analysis of furanoid esters in soybean oil and the effect of variety and environment on furanoid ester content. JAOCS 74: 1099–1103. [Google Scholar]
  • Yore MM, Syed I, Moraes-Vieira PM, et al. 2014. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159: 318–332. [Google Scholar]
  • Yurawecz MP, Hood JK, Mossoba MM, Roach JA, Ku Y. 1995. Furan fatty acids determined as oxidation products of conjugated octadecadienoic acid. Lipids 30: 595–598. [Google Scholar]
  • Zheng JS, Lin M, Imamura F, et al. 2016. Serum metabolomics profiles in response to n-3 fatty acids in Chinese patients with type 2 diabetes: a double-blind randomised controlled trial. Sci Rep 6: 29522. [Google Scholar]
  • Zhu QF, Yan JW, Gao Y, Zhang JW, Yuan BF, Feng YQ. 2017. Highly sensitive determination of fatty acid esters of hydroxyl fatty acids by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1061–1062: 34–40. [Google Scholar]
  • Zhu QF, Yan JW, Zhang TY, Xiao HM, Feng YQ. 2018. Comprehensive Screening and Identification of Fatty Acid Esters of Hydroxy Fatty Acids in Plant Tissues by Chemical Isotope Labeling-Assisted Liquid Chromatography-Mass Spectrometry. Anal Chem 90: 10056–10063. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.