Issue
OCL
Volume 28, 2021
Creating new oil & protein crop value chains / Construire de nouvelles filières oléoprotéagineuses
Article Number 40
Number of page(s) 14
DOI https://doi.org/10.1051/ocl/2021023
Published online 27 July 2021
  • Agogué M, Kazakçi A, Hatchuel A, et al. 2014a. The impact of type of examples on originality: explaining fixation and stimulation effects. J Creat Behav 48: 1–12. https://doi.org/10.1002/jocb.37. [Google Scholar]
  • Agogué M, Poirel N, Pineau A, Houdé O, Cassotti M. 2014b. The impact of age and training on creativity: A design-theory approach to study fixation effects. Think Ski Creat 11: 33–41. https://doi.org/10.1016/j.tsc.2013.10.002. [Google Scholar]
  • Avenier M-J, Schmitt C. 2007. Élaborer des savoirs actionnables et les communiquer à des managers. Rev Fr Gest 174: 25–42. [Google Scholar]
  • Berthet ETA, Bretagnolle V, Segrestin B. 2014. Surmonter un blocage de l’innovation par la conception collective. Cas de la réintroduction de luzerne dans une plaine céréalière. Fourrages 217: 13–21. [Google Scholar]
  • Berti M, Gesch R, Eynck C, Anderson J, Cermak S. 2016. Camelina uses, genetics, genomics, production, and management. Ind Crops Prod 94: 690–710. https://doi.org/10.1016/j.indcrop.2016.09.034. [Google Scholar]
  • Blanchard M, Vall É, Loumbana BT, Meynard J-M. 2017. Identification, caractérisation et évaluation des pratiques atypiques de gestion des fumures organiques au Burkina Faso : sources d’innovation ? Autrepart 81: 115–134. [Google Scholar]
  • Catalogna M, Dubois M, Navarrete M. 2018. Diversity of experimentation by farmers engaged in agroecology. Agron Sustain Dev 38: 50. https://doi.org/10.1007/s13593-018-0526-2. [Google Scholar]
  • Colombo L, Guccione GD, Canali S, Iocola I, Antier C, Morel K. 2020. An action-research exploration of value chain development from field to consumer based on organic hempseed oil in Sicily. OCL 27: 12. https://doi.org/10.1051/ocl/2020049. [Google Scholar]
  • Deytieux V, Cordeau S, Fontanieu G, Moreau D, Voisin A-S, Munier-Jolain N. 2018. Atelier de co-conception des systèmes de culture de la plateforme CA-SYS. In: Atelier de Conception de La Plateforme CA-SYS, Dijon, France. [Google Scholar]
  • Dolinska A, d’Aquino P. 2016. Farmers as agents in innovation systems. Empowering farmers for innovation through communities of practice. Agric Syst 142: 122–130. https://doi.org/10.1016/j.agsy.2015.11.009. [Google Scholar]
  • Falconnier GN, Descheemaeker K, Van Mourik TA, Adam M, Sogoba B, Giller KE. 2017. Co-learning cycles to support the design of innovative farm systems in southern Mali. Eur J Agron 89: 61–74. https://doi.org/10.1016/j.eja.2017.06.008. [Google Scholar]
  • Faugère E, Navarrete M, Charles M, et al. 2010. Des connaissances scientifiques en quête de connaissances d’acteurs. NSS 18: 395–403. https://doi.org/10.1051/nss/2011002. [EDP Sciences] [Google Scholar]
  • Garbach K, Morgan GP. 2017. Grower networks support adoption of innovations in pollination management: The roles of social learning, technical learning, and personal experience. J Environ Manage 204: 39–49. https://doi.org/10.1016/j.jenvman.2017.07.077. [PubMed] [Google Scholar]
  • George N, Hollingsworth J, Kaffka S. 2015. A guide for canola and camelina research in California. Univ Calif Davis Dept Plant Sci. [Google Scholar]
  • Gesch RW, Cermak SC. 2011. Sowing date and tillage effects on fall-seeded camelina in the northern corn belt. Agron J 103: 980–987. https://doi.org/10.2134/agronj2010.0485. [Google Scholar]
  • Girard N, Magda D. 2018. Les jeux entre singularité et généricité des savoirs agro-écologiques dans un réseau d’éleveurs. Rev Anthropol Connaiss 12(2): 199–228. https://doi.org/10.3917/rac.039.0199. [Google Scholar]
  • Girard N, Navarrete M. 2005. Quelles synergies entre connaissances scientifiques et empiriques ? L’exemple des cultures du safran et de la truffe. NSS 13: 33–44. https://doi.org/10.1051/nss/2005004. [CrossRef] [EDP Sciences] [Google Scholar]
  • Guichard L, Ballot R, Halska J, et al. 2015. AgroPEPS, a collaborative web tool of knowledge management to share, practice, inform on sustainable cropping systems. Innov Agron 43: 83–94. [Google Scholar]
  • Guillier M, Cros CRR. 2020. AUTO’N – Améliorer l’autonomie azotée des systèmes de culture en Champagne crayeuse. Innov Agron 79: 193. https://doi.org/10.15454/6frb-e556. [Google Scholar]
  • Hatchuel A, Weil B. 2003. A new approach of innovative design: an introduction to CK theory. In: DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering Design, Stockholm. [Google Scholar]
  • Hatchuel A, Weil B. 2009. CK design theory: an advanced formulation. Res Eng Des 19: 181–192. https://doi.org/10.1007/s00163-008-0043-4. [Google Scholar]
  • Husson O, Tran Quoc H, Boulakia S, et al. 2016. Co-designing innovative cropping systems that match biophysical and socio-economic diversity: The DATE approach to Conservation Agriculture in Madagascar, Lao PDR and Cambodia. Renew Agric Food Syst 31: 452–470. https://doi.org/10.1017/S174217051500037X. [Google Scholar]
  • Jeuffroy M-H, Loyce C, Lefeuvre T, et al. Design workshops for innovative cropping systems and decision-support tools: learning from 12 case studies. Submitted to EJA, forthcoming. [Google Scholar]
  • Kroma MM. 2006. Organic farmer networks: Facilitating learning and innovation for sustainable agriculture. J Sustain Agric 28: 5–28. https://doi.org/10.1300/J064v28n04_03. [Google Scholar]
  • Kuokkanen A, Mikkilä M, Kuisma M, Kahiluoto H, Linnanen L. 2017. The need for policy to address the food system lock-in: A case study of the Finnish context. J Clean Prod 140: 933–944. https://doi.org/10.1016/j.jclepro.2016.06.171. [CrossRef] [Google Scholar]
  • Lacombe C, Couix N, Hazard L. 2018. Designing agroecological farming systems with farmers: A review. Agric Syst 165: 208–220. https://doi.org/10.1016/j.agsy.2018.06.014. [CrossRef] [Google Scholar]
  • Lançon J, Wery J, Rapidel B, et al. 2004. Prototyping crop management systems for specific cotton growing conditions. In: Proc. World Cotton Res. Conf. – 3 Cotton Prod, New Millenn. https://agritrop.cirad.fr/520548/ (accessed 9/4/19). [Google Scholar]
  • Leclère M. 2019. Introducing diversifying species into the cropping systems of a territory: combining knowledge production and design within multi-stakeholders platforms. Application to the case study of camelina in the Oise department. Thesis, Université Paris-Saclay. [Google Scholar]
  • Leclère M, Loyce C, Jeuffroy M-H. 2018. Growing camelina as a second crop in France: A participatory design approach to produce actionable knowledge. Eur J Agron 101: 78–89. https://doi.org/10.1016/j.eja.2018.08.006. [Google Scholar]
  • Leclère M, Jeuffroy M-H, Butier A, Chatain C, Loyce C. 2019. Controlling weeds in camelina with innovative herbicide-free crop management routes across various environments. Ind Crops Prod 140: 111605. https://doi.org/10.1016/j.indcrop.2019.111605. [Google Scholar]
  • Leclère M, Lorent A-R, Jeuffroy M-H, Butier A, Chatain C, Loyce C. 2021. Diagnosis of camelina seed yield and quality across an on-farm experimental network. Eur J Agron 122: 126190. https://doi.org/10.1016/j.eja.2020.126190. [Google Scholar]
  • Lefèvre V, Capitaine M, Peigné J, Roger-Estrade J. 2014. Farmers and agronomists design new biological agricultural practices for organic cropping systems in France. Agron Sustain Dev 34: 623–632. https://doi.org/10.1007/s13593-013-0177-2. [Google Scholar]
  • Lesur-Dumoulin C, Laurent A, Reau R, et al. 2018. Co-design and ex ante assessment of cropping system prototypes including energy crops in Eastern France. Biomass Bioenergy 116: 205–215. https://doi.org/10.1016/j.biombioe.2018.06.013. [Google Scholar]
  • Loyce C, Wery J. 2006. Les outils des agronomes pour l’évaluation et la conception de systèmes de culture. In: L’agronomie Aujourd’hui. Quae Éditions, pp. 77–95. [Google Scholar]
  • Magrini M-B, Anton M, Cholez C, et al. 2016. Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol Econ 126: 152–162. https://doi.org/10.1016/j.ecolecon.2016.03.024. [Google Scholar]
  • Mary B, Beaudoin N, Justes E, Machet JM. 1999. Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model. Eur J Soil Sci 50: 549–566. https://doi.org/10.1046/j.1365-2389.1999.00264.x. [Google Scholar]
  • Meynard J-M., Charrier F, Fares M, et al. 2018. Socio-technical lock-in hinders crop diversification in France. Agron Sustain Dev 38: 54. https://doi.org/10.1007/s13593-018-0535-1. [Google Scholar]
  • Morel K, Revoyron E, Cristobal MS, Baret PV. 2020. Innovating within or outside dominant food systems? Different challenges for contrasting crop diversification strategies in Europe. PLOS ONE 15: e0229910. https://doi.org/10.1371/journal.pone.0229910. [Google Scholar]
  • Navarrete M, Jeannequin B, Sebillotte M. 1997. Vigour of greenhouse tomato plants (Lycopersicon esculentum Mill.): Analysis of the criteria used by growers and search for objective criteria. J Hortic Sci 72: 821–829. https://doi.org/10.1080/14620316.1997.11515576. [Google Scholar]
  • Obour AK, Chen C, Sintim HY, et al. 2018. Camelina sativa as a fallow replacement crop in wheat-based crop production systems in the US Great Plains. Ind Crops Prod 111: 22–29. https://doi.org/10.1016/j.indcrop.2017.10.001. [Google Scholar]
  • Pelzer E, Bourlet C, Carlsson G, Lopez-Bellido RJ, Jensen ES, Jeuffroy M-H. 2017. Design, assessment and feasibility of legume-based cropping systems in three European regions. Crop Pasture Sci 68: 902–914. https://doi.org/10.1071/CP17064. [Google Scholar]
  • Pelzer E, Bonifazi M, Soulié M, et al. 2020. Participatory design of agronomic scenarios for the reintroduction of legumes into a French territory. Agric Syst 184: 102893. https://doi.org/10.1016/j.agsy.2020.102893. [Google Scholar]
  • Périnelle A. 2021. Co-conception de systèmes de culture innovants avec 2 communautés villageoises du Burkina Faso : articulation entre traque aux innovations, prototypage participatif et expérimentations paysannes. Thèse en préparation, Université Paris-Saclay. [Google Scholar]
  • Petit M-S, Reau R. 2013. Le RMT Systèmes de culture innovants : un dispositif au service de l’innovation systémique, faisant évoluer le conseil et la formation en agronomie. Agron Environ Soc 3: 137–144. [Google Scholar]
  • Petit MS, Reau R, Dumas M, Moraine M, Omon B, Josse S. 2012. Mise au point de systèmes de culture innovants par un réseau d’agriculteurs et production de ressources pour le conseil. Innov Agron. [Google Scholar]
  • Plénet D, Simon S. 2015. Une démarche de conception et d’évaluation de systèmes de culture pour des vergers plus durables. Sci Eaux Territ 16: 58–63. [Google Scholar]
  • Puech C, Brulaire A, Paraiso J, Faloya V. 2021. Collective design of innovative agroecological cropping systems for the industrial vegetable sector. Agric Syst 191: 103153. https://doi.org/10.1016/j.agsy.2021.103153. [Google Scholar]
  • Quinio M, Détienne F, Guichard L, Jeuffroy M-H. 2019. Knowledge structures to support design of cropping systems by farmers. In: Presented at the 6th International Symposium for Farming Systems Design, Montevideo, Uruguay. [Google Scholar]
  • Ravier C, Jeuffroy M-H, Gate P, Cohan J-P, Meynard J-M. 2018. Combining user involvement with innovative design to develop a radical new method for managing N fertilization. Nutr Cycl Agroecosyst 110: 117–134. https://doi.org/10.1007/s10705-017-9891-5. [Google Scholar]
  • Reau R, Monnot L-A, Schaub A, et al. 2012. Les ateliers de conception de systèmes de culture pour construire, évaluer et identifier des prototypes prometteurs. Innov Agron 20: 5–33. [Google Scholar]
  • Reau R, Cros C, Leprun B, Merot E, Omon B, Paravano L. 2016. La construction des schémas décisionnels et leurs mobilistions dans le chamgent des systèmes de culture. Agric Environ Soc 6: 83–92. [Google Scholar]
  • Reau R, Cerf M, Cros C, et al. 2018. Ateliers de conception de systèmes de culture. Guide pour leur réalisation avec des agriculteurs. [Google Scholar]
  • Richard A, Casagrande M, Jeuffroy M-H, David C. 2020. A farmer-oriented method for co-designing groundwater-friendly farm management. Agron Sustain Dev 40: 26. https://doi.org/10.1007/s13593-020-00622-7. [Google Scholar]
  • Salembier C. 2019. Stimuler la conception distribuée de systèmes agroécologiques par l’étude de pratiques innovantes d’agriculteurs. [Google Scholar]
  • Salembier C, Elverdin JH, Meynard J-M. 2016. Tracking on-farm innovations to unearth alternatives to the dominant soybean-based system in the Argentinean Pampa. Agron Sustain Dev 36. https://doi.org/10.1007/s13593-015-0343-9. [Google Scholar]
  • Salembier C, Segrestin B, Berthet E, Weil B, Meynard J-M. 2018. Genealogy of design reasoning in agronomy: Lessons for supporting the design of agricultural systems. Agric Syst 164: 277–290. https://doi.org/10.1016/j.agsy.2018.05.005. [Google Scholar]
  • Sebillotte M. 1990. Système de culture, un concept opératoire pour les agronomes. In Combe L, Picard D, eds. Les systèmes de culture. Paris : INRA, pp. 165–196. [Google Scholar]
  • Tchamitchian M, Martin-Clouaire R, Lagier J, Jeannequin B, Mercier S. 2006. SERRISTE: A daily set point determination software for glasshouse tomato production. Comput Electron Agric 50: 25–47. https://doi.org/10.1016/j.compag.2005.07.004. [Google Scholar]
  • Toffolini Q, Jeuffroy M-H, Mischler P, Pernel J, Prost L. 2017. Farmers’ use of fundamental knowledge to re-design their cropping systems: Situated contextualisation processes. NJAS – Wagening J Life Sci 80: 37–47. https://doi.org/10.1016/j.njas.2016.11.004. [Google Scholar]
  • Trouche L, Aubin S, Soulignac V, Guichard L. 2016. Construction of a semantic model for organizing knowledge dedicated to agroecology. The case of Agro-PEPS/GECO. Agron Environ Soc 6: 141–150. [Google Scholar]
  • Valantin-Morison M, Meynard J-M. 2012. A conceptual model to design prototypes of crop management: A way to improve organic winter oilseed rape performance in farmers’ fields, in: crop management – Cases and tools for higher yield and sustainability. Fabio R. Marin, 77 p. [Google Scholar]
  • Verret V, Pelzer E, Bedoussac L, Jeuffroy M-H. 2019. Traque aux innovations d’agriculteurs pour la conception d’associations d’espèces incluant des légumineuses. Innov Agron 74: 143–154. [Google Scholar]
  • Verret V, Pelzer E, Bedoussac L, Jeuffroy M-H. 2020. Tracking on-farm innovative practices to support crop mixture design: The case of annual mixtures including a legume crop. Eur J Agron 115: 126018. https://doi.org/10.1016/j.eja.2020.126018. [Google Scholar]
  • Zimmer S, Liebe U, Didier J-P, Heß J. 2016. Luxembourgish farmers’ lack of information about grain legume cultivation. Agron Sustain Dev 36: 2. https://doi.org/10.1007/s13593-015-0339-5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.