Issue
OCL
Volume 28, 2021
Technological challenges in oilseed crushing and refining / Défis technologiques de la trituration et du raffinage des oléagineux
Article Number 13
Number of page(s) 16
DOI https://doi.org/10.1051/ocl/2021001
Published online 16 February 2021
  • Andréasson E, Jørgensen LB, Höglund AS, Rask L, Meijer J. 2001. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiology 127(4): 1750–1763. [PubMed] [Google Scholar]
  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL. 2007. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiology 143(3): 1173–1188. [PubMed] [Google Scholar]
  • Bell JM. 1993. Factors affecting the nutritional value of canola meal: a review. Canadian Journal of Animal Science 73(4): 689–697. [Google Scholar]
  • Biopress − page du site internet: protéines de soja texturées. Available from https://www.biopress.fr/product/proteines-soja-texturees/ (last consult: May 2020). [Google Scholar]
  • Boatright WL, Hettiarachchy NS. 1995. Effect of lipids on soy protein isolate solubility. Journal of the American Oil Chemists’ Society 72(12): 1439–1444. [Google Scholar]
  • Boye JI, Barbana C. 2012. Protein processing in food and bioproduct manufacturing and techniques for analysis. In: Food and Industrial Bioproducts and Bioprocessing. New Jersey: John Wiley & Sons, Inc., pp. 85–113. [Google Scholar]
  • Burel C, Boujard T, Tulli F, Kaushik SJ. 2000. Digestibility of extruded peas, extruded lupin, and rapeseed meal in rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Aquaculture 188(3–4): 285–298. [Google Scholar]
  • Campbell LD, Slominski BA. 1990. Extent of thermal decomposition of indole glucosinolates during the processing of canola seed. Journal of the American Oil Chemists’ Society 67(2): 73–75. [Google Scholar]
  • Campbell L, Rempel CB, Wanasundara JP. 2016. Canola/rapeseed protein: future opportunities and directions. In: Workshop proceedings of IRC 2015. [Google Scholar]
  • Carré P. 2009. Review and evaluation of major and most promising processing technologies for oilseed pre- treatment and extraction. 10.13140/RG.2.2.26653.54249 [Google Scholar]
  • Carré P, Citeau M, Dauguet S. 2018. Hot ethanol extraction: economic feasibility of a new and green process. OCL 25(2): D206. [CrossRef] [EDP Sciences] [Google Scholar]
  • Carré P, Citeau M, Robin G, Estorges M. 2016. Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica napus). OCL 23(3): A302. [CrossRef] [EDP Sciences] [Google Scholar]
  • Carré P, Quinsac A, Citeau M, Fine F. 2015. A re-examination of the technical feasibility and economic viability of rapeseed dehulling. OCL 22(3): D304. [CrossRef] [EDP Sciences] [Google Scholar]
  • Carré P, Thomasset B, Lazouk A, Rhazi L, Savoire R. 2017. Procédé de de décorticage de graines. Patent FR3045416(A1). [Google Scholar]
  • Chen BH-Y, Morr CV. 1985. Solubility and foaming properties of phytate-reduced soy protein isolate. Journal of Food Science 50(4): 1139–1142. [Google Scholar]
  • Cheng MH, Rosentrater KA, Sekhon J, Wang T, Jung S, Johnson LA. 2019. Economic feasibility of soybean oil production by enzyme-assisted aqueous extraction processing. Food and Bioprocess Technology 12(3): 539–550. [Google Scholar]
  • Cheryan M, Rackis JJ. 1980. Phytic acid interactions in food systems. Critical Reviews in Food Science & Nutrition 13(4): 297–335. [Google Scholar]
  • Cho YS, Thompson LU. 1984. Precipitation behavior of extracted nitrogen, phytic acid and minerals in rapeseed flour modified by acylating agents. Journal of Food Science 49(3): 765–767. [Google Scholar]
  • Citeau M, Slabi SA, Joffre F, Carré P. 2018. Improved rapeseed oil extraction yield and quality via cold separation of ethanol miscella. OCL 25(2): D207. [CrossRef] [EDP Sciences] [Google Scholar]
  • Clandinin DR. 1961. Rapeseed oil meal studies: 4. Effect of sinapin, the bitter substance in rapeseed oil meal, on the growth of chickens. Poultry Science 40(2): 484–487. [Google Scholar]
  • Coward L, Smith M, Kirk M, Barnes S. 1998. Chemical modification of isoflavones in soyfoods during cooking and processing. The American Journal of Clinical Nutrition 68(6): 1486S–1491S. [PubMed] [Google Scholar]
  • Cui W, Han NF. 2006. U.S. Patent No. 7,022,363. Washington, DC: U.S. Patent and Trademark Office. [Google Scholar]
  • De Boland AR, Garner GB, O’Dell BL. 1975. Identification and properties of phytate in cereal grains and oilseed products. Journal of Agricultural and Food Chemistry 23(6): 1186–1189. [PubMed] [Google Scholar]
  • De Figueiredo AK, Baümler E, Riccobene IC, Nolasco SM. 2011. Moisture-dependent engineering properties of sunflower seeds with different structural characteristics. Journal of Food Engineering 102(1): 58–65. [Google Scholar]
  • de Moura JM, Campbell K, Mahfuz A, Jung S, Glatz CE, Johnson L. 2008. Enzyme-assisted aqueous extraction of oil and protein from soybeans and cream de-emulsification. Journal of the American Oil Chemists’ Society 85(10): 985–995. [Google Scholar]
  • De Rham O, Jost T. 1979. Phytate-protein interactions in soybean extracts and low-phytate soy protein products. Journal of Food Science 44(2): 596–600. [Google Scholar]
  • Deak NA, Johnson LA. 2007. Fate of phytic acid in producing soy protein ingredients. Journal of the American Oil Chemists’ Society 84(4): 369–376. [Google Scholar]
  • Denis L, Coelho V, Vear F. 1994. Pericarp structure and hullability in sunflower inbred lines and hybrids. Agronomie, EDP Sciences 14(7): 453–461. hal-00885650. [Google Scholar]
  • Dereuder A. 2019. Avril et DSM vont produire une protéine de colza. Process Alimentaire, 8 juillet 2019. Available from https://www.processalimentaire.com/ingredients/avril-et-dsm-vont-produire-une-proteine-de-colza?sso=1585667417 (last consult: in May 2020). [Google Scholar]
  • Directive 2009 /32/EC of the European Parliament and of the Council of 23 April 2009 on the approximation of the laws of the Member States on extraction solvents used in the production of foodstuffs and food ingredients). OJL 141(6.6.2009): 3–11. [Google Scholar]
  • Dorrell DG. 1976. Chlorogenic acid content of meal from cultivated and wild sunflowers 1. Crop Science 16(3): 422–424. [Google Scholar]
  • Eklund M, Sauer N, Schöne F, et al. 2015. Effect of processing of rapeseed under defined conditions in a pilot plant on chemical composition and standardized ileal amino acid digestibility in rapeseed meal for pigs. Journal of Animal Science 93(6): 2813–2825. [PubMed] [Google Scholar]
  • Erdman JW. 1979. Oilseed phytates: nutritional implications. Journal of the American Oil Chemists’ Society 56 (8): 736–741. [Google Scholar]
  • Eurostat. Crop production in EU standard humidity. Available from https://ec.europa.eu/eurostat/web/agriculture/data/database (last consult: 2020/09/18). [Google Scholar]
  • Evangelista RL, Cermak SC. 2007. Full-press oil extraction of cuphea (PSR23) seeds. Journal of the American Oil Chemists’ Society 84(12): 1169–1175 [Google Scholar]
  • Evon P, Vandenbossche V, Pontalier PY, Rigal L. 2010. The twin-screw extrusion technology, an original and powerful solution for the biorefinery of sunflower whole plant. In: 18th European Biomass Conference and Exhibition, 3–7 May 2010, Lyon, France. [Google Scholar]
  • Evrard J, Baudet J. 1978. Improvement of rapeseed cake by dehulling. In: Fette Seifen Anstrichmittel. Leinfelden-Echterdingen, Germany: Konradin Industrieverlag GMBH, Vol. 80, No. 11, pp. 435–435. [Google Scholar]
  • Fauduet H, Coic JP, Lessire M, Quinsac A, Ribaillier D, Rollin P. 1995. Rapeseed meal upgrading—pilot scale preparation of rapeseed meal materials with high or low glucosinolate contents. Animal Feed Science and Technology 56(1–2): 99–109. [Google Scholar]
  • Feedbase. io − the French Feed Database. Available from http://www.feedbase.com/ (last consult: Dec. 2020). [Google Scholar]
  • FeedTables. 2020. "Rapeseed meal, oil <5%". Available from https://www.feedtables.com/content/rapeseed-meal-oil-5 (last consult 12/12/20). [Google Scholar]
  • Fenwick GR, Spinks EA, Wilkinson AP, Heaney RK, Legoy MA. 1986. Effect of processing on the antinutrient content of rapeseed. Journal of the Science of Food and Agriculture 37(8): 735–741. [Google Scholar]
  • Fetzer A, Herfellner T, Stäbler A, Menner M, Eisner P. 2018. Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake. Industrial Crops and Products 112: 236–246. [Google Scholar]
  • Freeman TP. 1995. Chapter “Structure of flaxseed”. In: Cunnane SC, Thompson LU (eds.). Flaxseed in human nutrition. Champaign, IL, USA: AOCS Press, pp. 11–21. [Google Scholar]
  • Gifford-Steffen SR, Clydesdale FM. 1993. Effect of varying concentrations of phytate, calcium, and zinc on the solubility of protein, calcium, zinc, and phytate in soy protein concentrate. Journal of Food Protection 56(1): 42–46. [PubMed] [Google Scholar]
  • González-Pérez S, Merck KB, Vereijken JM, van Koningsveld GA, Gruppen H, Voragen AG. 2002. Isolation and characterization of undenatured chlorogenic acid free sunflower (Helianthus annuus) proteins. Journal of Agricultural and Food Chemistry 50(6): 1713–1719. [PubMed] [Google Scholar]
  • Graf E. 1983. Applications of phytic acid. Journal of the American Oil Chemists’ Society 60(11): 1861–1867. [Google Scholar]
  • Hartman GH. 1979. Removal of phytate from soy protein. Journal of the American Oil Chemists’ Society 56(8): 731–735. [Google Scholar]
  • Haverland A. 2019. Quel est l’industriel derrière les burgers végétaux de Burger King en Europe ? L’Usine Nouvelle Agro. [Google Scholar]
  • Haverland A. 2020. Comment « Les Nouveaux Fermiers » promettent de la « viande végétale » made in France ? L’Usine Nouvelle Agro. [Google Scholar]
  • Honkatukia M, Reese K, Preisinger R, et al. 2005. Fishy taint in chicken eggs is associated with a substitution within a conserved motif of the FMO3 gene. Genomics 86(2): 225–232. [PubMed] [Google Scholar]
  • Huang F, Li W, Huang Q, Niu Y, Wan C. 2007. New process of dehulling-cold pressing-expansion for doublelow rapeseed. In: Proc. 12th International Rapeseed Congress, Wuhan, China. Vol. 5, pp. 126–130. [Google Scholar]
  • Isobe S, Zuber F, Uemura K, Noguchi A. 1992. A new twin-screw press design for oil extraction of dehulled sunflower seeds. Journal of the American Oil Chemists’ Society 69(9): 884–889. [Google Scholar]
  • Jiang J, Wang Y, Xie T, et al. 2015. Metabolic characteristics in meal of black rapeseed and yellow-seeded progeny of Brassica napus-Sinapis alba hybrids. Molecules 20(12): 21204–21213. [PubMed] [Google Scholar]
  • Johnson L, Lusas EW. 1983. Comparison of alternative solvents for oils extraction. Journal of the American Oil Chemists’ Society 60(2 Part 1): 229–242. [Google Scholar]
  • Jones JD. 1979. Rapeseed protein concentrate preparation and evaluation. Journal of the American Oil Chemists’ Society 56(8): 716–721. [Google Scholar]
  • Jauvion V. 2019. Qualité des graines de colza − récolte 2019. Available from https://www.terresinovia.fr/-/qualite-des-graines-de-colza (last consult: 2020/04/20). [Google Scholar]
  • Kasprzak MM, Houdijk JGM, Olukosi OA, et al. 2017. The influence of oil extraction process of different rapeseed varieties on the ileal digestibility of crude protein and amino acids in broiler chickens. Animal Feed Science and Technology 227: 68–74. [Google Scholar]
  • Kasprzak MM, Houdijk JGM, Olukosi OA, et al. 2018. The content and standardized ileal digestibility of crude protein and amino acids in rapeseed co-products fed to pigs. Livestock Science 208: 22–27. [Google Scholar]
  • Kies AK, De Jonge LH, Kemme PA, Jongbloed AW. 2006. Interaction between protein, phytate, and microbial phytase. In vitro studies. Journal of Agricultural and Food Chemistry 54(5): 1753–1758. [PubMed] [Google Scholar]
  • Kikugawa K, Ido Y, Mikami A. 1984. Studies on peroxidized lipids. VI. Fluorescent products derived from the reaction of primary amines, malonaldehyde and monofunctional aldehydes. Journal of the American Oil Chemists’ Society 61(10): 1574–1581. [Google Scholar]
  • Knudsen KEB, Li BW. 1991. Determination of oligosaccharides in protein-rich feedstuffs by gas-liquid chromatography and high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 39(4): 689–694. [Google Scholar]
  • Koc AB, Abdullah M, Fereidouni M. 2011. Soybean processing for biodiesel production. Soybean-Application and Technology: 19–32. [Google Scholar]
  • Kozlowska H, Nowak H, Zadernowski R. 1988. Rapeseed hulls fat characteristics. Lipid/Fett 90(6): 216–219. [Google Scholar]
  • Lacombe S, Théodorou-Bayle V, La Droitte P, Dayde J. 2000. Les isoflavones du soja dans la filière aliment santé. Oléagineux, Corps gras, Lipides 7(3): 286–296. [Google Scholar]
  • Le Clef E, Kemper T. 2015. Sunflower seed preparation and oil extraction. In: Sunflower. AOCS Press, pp. 187–226. [Google Scholar]
  • Li T, Lu X, Yang X. 2017. Evaluation of clinical safety and beneficial effects of stachyose-enriched α-galacto-oligosaccharides on gut microbiota and bowel function in humans. Food & Function 8(1): 262–269. [PubMed] [Google Scholar]
  • Li W, Huang F, Gu Q, Gan W. 2007. Research and application of twin-screw expeller for cold pressing of de-hulled rapeseed. In: The 12th International Rapeseed Congress, Wuhan, China. USA: Science Press, pp. 213–216. [Google Scholar]
  • Liang M, Huang S, Huff HE, Kerley MS, Hsieh F. 2002. Extrusion cooking of rapeseed meal for feeding value improvement. Applied Engineering in Agriculture 18(3): 325–330. [Google Scholar]
  • Lipsa F, Snowdon R, Friedt W. 2007. Improving rapeseed meal quality by reduction of condensed tannins. In: Proceedings of the 12th International Rapeseed Congress, pp. 135–137. [Google Scholar]
  • List GR, Mounts TL. 1993. Origin of the nonhydratable soybean phosphatides: whole beans or extraction? J.A.O.C.S. 70(6):639–641. [Google Scholar]
  • Liu Y, Yan Y, Ma Y, Yang Y. 2013. Preparation of feed protein concentrate from high-temperature rapeseed meal by ethanol extraction. China Oils and Fats (8): 5. [Google Scholar]
  • McCurdy SM, March BE. 1992. Processing of canola meal for incorporation in trout and salmon diets. Journal of the American Oil Chemists’ Society 69(3): 213–220. [Google Scholar]
  • Maheshwari PN, Stanley DW, Van de Voort FR. 1980. Microwave treatment of dehulled rapeseed to inactivate myrosinase and its effect on oil and meal quality. Journal of the American Oil Chemists’ Society 57(7): 194–199. [Google Scholar]
  • Manamperi WAR, Chang SKC, Wiesenborn DP, Pryor SW. 2012. Impact of meal preparation method and extraction procedure on canola protein yield and properties. Biological Engineering Transactions 5(4): 191–200. [Google Scholar]
  • Merrien A, Dominguez J, Vannozzi GP, Baldini M, Champolivier L, Carré P. 1992. Factors affecting the dehulling ability in Sunflower. In: Proc. 13th Int. Sunfl. Conf., Pisa, Italy. Paris, France: Int. Sunfl. Assoc. [Google Scholar]
  • Mueller MM, Ryl EB, Fenton T, Clandinin DR. 1978. Cultivar and growing location differences on the sinapine content of rapeseed. Canadian Journal of Animal Science 58(4): 579–583. [Google Scholar]
  • Müller M, Eggers R. 2014. Gas-assisted oilseed pressing on an industrial scale. Journal of the American Oil Chemists’ Society 91(9): 1633–1641. [Google Scholar]
  • Murru M, Lera Calvo CL. 2020. Sunflower protein enrichment. Methods and potential applications. OCL 27: 17. [EDP Sciences] [Google Scholar]
  • Mustakas C, Kirk LD, Griffin EL. 1962. Flash desolventizing defatted soybean meals washed with aqueous alcohols to yield a high-protein product. Journal of the American Oil Chemists Society 39(4): 222–226. [Google Scholar]
  • Nicot M. 2019. Le végétal se pose en concurrent frontal de la viande. Available from https://www.lsa-conso.fr/le-vegetal-se-pose-en-concurrent-frontal-de-la-viande,325926 (last consult: 2020/05/22). [Google Scholar]
  • Nierenberg A. 2020. Plant-Based ‘Meats’ Catch On in the Pandemic. The New York Times. Available from https://nyti.ms/3g7HdPw. [Google Scholar]
  • Ntone E, Bitter JH, Nikiforidis CV. 2020. Not sequentially but simultaneously: Facile extraction of proteins and oleosomes from oilseeds. Food Hydrocolloids 102: 105598. [Google Scholar]
  • Oomah DB, Mazza G, Kenaschuk EO. 1996. Dehulling characteristics of flaxseed. LWT-Food Science and Technology 29(3): 245–250. [Google Scholar]
  • Östbring K, Malmqvist E, Nilsson K, Rosenlind I, Rayner M. 2020. The effects of oil extraction methods on recovery yield and emulsifying properties of proteins from rapeseed meal and press cake. Foods 9(1): 19. [Google Scholar]
  • Park WY, Matsui T, Yano F, Yano H. 2000. Heat treatment of rapeseed meal increases phytate flow into the duodenum of sheep. Animal Feed Science and Technology 88(1–2): 31–37. [Google Scholar]
  • Pennakem. 2020. Green innovative extraction. Available from https://ecoxtract.com/ (last consult: 10/04/20) [Google Scholar]
  • Pottgüter R. 2006. New prospects for using rape seed (canola) in layer rations. Lohmann Information 41: 51–56. Available from http://www.lohmann-information.com/content/l_i_41_2006-12_artikel7.pdf (last consult: 10.04.20). [Google Scholar]
  • Prattley CA, Stanley DW. 1982. Protein-phytate interactions in soybeans. I. Localization of phytate in protein bodies and globoids. Journal of Food Biochemistry 6(4): 243–254. [Google Scholar]
  • Purkrtova Z, Jolivet P, Miquel M, Chardot T. 2008. Structure and function of seed lipid body-associated proteins. Comptes Rendus Biologies 331(10): 746–754. [PubMed] [Google Scholar]
  • Pyett S, de Vet EWML, Trindade LM, van Zanten HHE, Fresco LO. 2019. Chickpeas, crickets and chlorella: our future proteins. In: Wageningen Food & Biobased Research. Available from https://library.wur.nl/WebQuery/wurpubs/fulltext/496402 (last consult: May 2020). [Google Scholar]
  • Quinsac A, Carré P, Fine F. 2016. Combining pelletizing to cold pressing in the rapeseed crushing process improves energy balance and the meal and oil quality. European Journal of Lipid Science and Technology 118(9): 1326–1335. [Google Scholar]
  • Quinsac A, Carré P, Fauconnier ML, et al. 2015. Glucosinolates and by-products in rapeseed meal related to hydrothermal processing. In: Proccedings of the 14th International Rapeseed Congress − Saskatoon. [Google Scholar]
  • Rackis JJ, Sessa DJ, Honig DH. 1979. Flavor problems of vegetable food proteins. Journal of the American Oil Chemists’ Society 56(3 Part 2): 262–271. [Google Scholar]
  • Rapinel V, Rombaut N, Rakotomanomana N, Vallageas A, Cravotto G, Chemat F. 2017. An original approach for lipophilic natural products extraction: Use of iquefied n-butane as alternative solvent to n-hexane. LWT-Food Science and Technology 85: 524–533. [Google Scholar]
  • Rapinel V, Claux O, Abert-Vian M, et al. 2020. 2-Methyloxolane (2-MeOx) as Sustainable Lipophilic Solvent to Substitute Hexane for Green Extraction of Natural Products. Properties, Applications, and Perspectives. Molecules 25(15): 3417. [Google Scholar]
  • Reau R, Bodet JM, Bordes JP, et al. 2005. Effets allélopathiques des Brassicacées via leurs actions sur les agents pathogènes telluriques et les mycorhizes: analyse bibliographique. Partie 1. Oléagineux, Corps gras, Lipides 12(3): 261–271. [Google Scholar]
  • Reverchon E, de Marco I. 2006. Supercritical fluid extraction and fractionation of natural matter. The Journal of Supercritical Fluids 38(2): 146–166. [Google Scholar]
  • de Rham O, Jost T. 1979. Phytate-protein interactions in soybean extracts and low-phytate soy protein products. Journal of Food Science 44(2): 596–600. [Google Scholar]
  • Rommi K, Ercili-Cura D, Hakala TK, Nordlund E, Poutanen K, Lantto R. 2015. Impact of total solid content and extraction pH on enzyme-aided recovery of protein from defatted rapeseed (Brassica rapa L.) press cake and physicochemical properties of the protein fractions. Journal of Agricultural and Food Chemistry 63(11): 2997–3003. [PubMed] [Google Scholar]
  • Salazar-Villanea S, Bruininx EMAM, Gruppen H, et al. 2016. Physical and chemical changes of rapeseed meal proteins during toasting and their effects on in vitro digestibility. J Anim Sci Biotechnol 7: 62. [CrossRef] [PubMed] [Google Scholar]
  • Sánchez-Vioque R, Clemente A, Vioque J, Bautista J, Millán F. 1998. Polar lipids of defatted chickpea (Cicer arietinum L.) flour and protein isolates. Food Chemistry 63(3): 357–361. [Google Scholar]
  • Savoire R, Lanoisellé JL, Vorobiev E. 2013. Mechanical continuous oil expression from oil seeds a review. Food and Bioprocess Technology 6(1): 1–16. [Google Scholar]
  • Schneider FH. 1979. Schälung von Rapssaat durch definierte Verformung Teil II: Untersuchungen zum Schälverhalten. Fette, Seifen, Anstrichmittel 81(2): 53–59. [Google Scholar]
  • Schöne F, Rudolph B, Kirchheim U, Knapp G. 1997. Counteracting the negative effects of rapeseed and rapeseed press cake in pig diets. British Journal of Nutrition 78(6): 947–962. [Google Scholar]
  • Schöne F, Groppel B, Hennig A, Jahreis G, Lange R. 1997. Rapeseed meals, methimazole, thiocyanate and iodine affect growth and thyroid. Investigations into glucosinolate tolerance in the pig. Journal of the Science of Food and Agriculture 74(1): 69–80. [Google Scholar]
  • Selle PH, Ravindran V, Caldwell A, Bryden WL. 2000. Phytate and phytase: consequences for protein utilisation. Nutrition Research Reviews 13(2): 255–278. [PubMed] [Google Scholar]
  • Shahidi F, Naczk M. 1990. Removal of glucosinolates and other antinutrients from canola and rapeseed by methanol/ammonia processing. In: Canola and rapeseed. Boston, MA: Springer, pp. 291–306. [Google Scholar]
  • Shahidi F, Naczk M. 2003. Phenolics in food and nutraceuticals. CRC Press. [Google Scholar]
  • Shallo HE, Rao A, Ericson AP, Thomas RL. 2001. Preparation of soy protein concentrate by ultrafiltration. Journal of Food Science 66(2): 242–246. [Google Scholar]
  • Shchekoldina T, Aider M. 2014. Production of low chlorogenic and caffeic acid containing sunflower meal protein isolate and its use in functional wheat bread making. Journal of Food Science and Technology 51(10): 2331–2343. [PubMed] [Google Scholar]
  • Sicaire AG, Vian MA, Fine F, Carré P, Tostain S, Chemat F. 2015a. Experimental approach versus COSMO-RS assisted solvent screening for predicting the solubility of rapeseed oil. OCL Oilseeds and fats crops and lipids 22(4): D404. [Google Scholar]
  • Sicaire AG, Vian M, Fine F, Joffre F, Carré P, Tostain S, Chemat F. 2015b. Alternative bio-based solvents for extraction of fat and oils: solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing. International journal of molecular sciences 16(4): 8430–8453 [PubMed] [Google Scholar]
  • Slabi SA, Mathe C, Basselin M, et al. 2020. Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal. Food Chemistry 317: 126423 (11 p). [Google Scholar]
  • Sosulski F, Zadernowski R. 1981. Fractionation of rapeseed meal into flour and hull components. Journal of the American Oil Chemist’s Society 58(2): 96–98. [Google Scholar]
  • Sosulski F, Zadernowski R, Babuchowski K. 1981. Composition of polar lipids in rapeseed. Journal of the American Oil Chemists Society 58(4): 561–564. [Google Scholar]
  • Steggerda FR, Richards EA, Rackis JJ. 1966. Effects of various soybean products on flatulence in the adult man. Proceedings of the Society for Experimental Biology and Medicine 121(4): 1235–1239. [Google Scholar]
  • Suarez FL, Springfield J, Furne JK, Lohrmann TT, Kerr PS, Levitt MD. 1999. Gas production in humans ingesting a soybean flour derived from beans naturally low in oligosaccharides. The American Journal of Clinical Nutrition 69(1): 135–139. [PubMed] [Google Scholar]
  • Taha FS, Elnockrashy AS. 1981. Low phytate, low chlorogenic acid sunflower seed protein concentrate. Food/Nahrung 25(8): 759–764. [Google Scholar]
  • Terrena. 2019. Available from https://www.terrena.fr/avril-et-terrena-sassocient-pour-creer-oleosyn-bio-une-filiere-biologique-complete-a-partir-de-graines-oleagineuses-francaises/ (last consult: May2020). [Google Scholar]
  • Terres Univia. 2020. Prix des huiles. Available from http://www.terresunivia.fr/reglementation-marches/statistiques/prix (last consult: 10/04/20). [Google Scholar]
  • Teutoburger. 2020. Available from https://www.teutoburger-oelmuehle.de/en/node/237 (last consult: 2020/04/15). [Google Scholar]
  • Thompson LU, Cho YS. 1984. Effect of acylation upon extractability of nitrogen, phytic acid and minerals in rapeseed flour protein concentrates. Journal of Food Science 49(3): 771–776. [Google Scholar]
  • Tormo E, Dauguet S. 2018. Qualité des tourteaux de colza. Available from https://www.terresinovia.fr/documents/20126/0/fiche_Terres_Inovia_Terres-Univia-qualite-tourteaux-colza2018V3+%281%29.pdf/93858330-cac6-f45c-d0bd-95845352fab4?t=1557409773790 (last consult: 2020/08/05). [Google Scholar]
  • Tripathi MK, Mishra AS. 2007. Glucosinolates in animal nutrition: A review. Animal Feed Science and Technology 132(1–2): 1–27. [Google Scholar]
  • Tzeng YM, Diosady LL, Rubin LJ. 1988. Preparation of rapeseed protein isolate by sodium hexametaphosphate extraction, ultrafiltration, diafiltration, and ion-exchange. Journal of Food Science 53(5): 1537–1541. [Google Scholar]
  • UCAL. 2019. Lancement du projet UCAL Proétines. Available from http://www.ucal.coop/lancement-projet-ucal-proteines/ (last consult: 2020/05/21). [Google Scholar]
  • Vadke VS, Sosulski FW. 1988. Mechanics of oil expression from canola. Journal of the American Oil Chemists’ Society 65(7): 1169–1176. [Google Scholar]
  • Villalobos FJ, Soriano A, Fereres E. 1992. Effects of shading on dry matter partitioning and yield of field-grown sunflower. Eur J Agron 1(2): 109–115. [Google Scholar]
  • Von Der Haar D, Müller K, Bader-Mittermaier S, Eisner P. 2014. Rapeseed proteins–Production methods and possible application ranges. OCL 21(1): D104. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wang HJ, Murphy PA. 1994. Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry 42(8): 1666–1673. [Google Scholar]
  • Willems P, Kuipers NJM, De Haan AB. 2008. Gas assisted mechanical expression of oil seeds influence of process parameters on oil yield. The Journal of Supercritical Fluids 45(3): 298–305. [Google Scholar]
  • Xu L, Diosady LL. 1994. The production of Chinese rapeseed protein isolates by membrane processing. Journal of the American Oil Chemists’ Society 71(9): 935–939. [Google Scholar]
  • Zago E, Lecomte J, Barouh N, et al. 2015. Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol. Industrial Crops and Products 76: 1061–1070. [Google Scholar]
  • Zardo I, Rodrigues NP, Sarkis JR, Marczak LD. 2020. Extraction and identification by mass spectrometry of phenolic compounds from canola seed cake. Journal of the Science of Food and Agriculture 100(2): 578–586. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.