Open Access
Volume 27, 2020
Article Number 37
Number of page(s) 12
Section Quality - Food safety
Published online 28 July 2020
  • Abdalla IIH, Khaddor M, Boussab A, Garrouj DE, Ayadi M. 2014. The effect of storage time on the quality of olive oil produced by cooperatives for olive growers in the North of Morocco. Asian J Agric Food Sci 02: 129–138. [Google Scholar]
  • American Oil Chemists’ Society (AOCS). 2003. Official Method for determining peroxide value Acetic Acid-Chloroform, Cd 8-53. [Google Scholar]
  • American Oil Chemists’ Society (AOCS). 1997. Determination of tocopherols and tocotrienols in vegetable oils and fats by HPLC. AOCS Official Method Ce 8-89. [Google Scholar]
  • Arslan D, Schreiner M. 2012. Chemical characteristics and antioxidant activity of olive oils from Turkish varieties grown in Hatay province. Sci Horticult 144: 141–152. [CrossRef] [Google Scholar]
  • Baiano A, Terracone C, Viggiani I, Del Nobile MA. 2014. Changes produced in extra-virgin olive oils from cv. Coratina during a prolonged storage treatment. Czech J Food Sci 32(1): 1–9. [CrossRef] [Google Scholar]
  • Bakhouche A, Lozano-Sánchez J, Ballus CA, et al. 2014. A new extraction approach to correct the effect of apparent increase in the secoiridoid content after filtration of virgin olive oil. Talanta 127: 18–25. [CrossRef] [PubMed] [Google Scholar]
  • Bendini A, Cerretani L, Salvador MDM, Fregapane G, Lercker G. 2009. Stability of the sensory quality of virgin olive oil during storage: An overview. Ital Food Beverage Technol 21: 389–406. [Google Scholar]
  • Boskou D. 2006. Olive oil – Chemistry and technology. AOCS Press. [Google Scholar]
  • Brenes M, Garcia A, Garcia P, Garrido A. 2001. Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J Agric Food Chem 49(11): 5609–5614. [CrossRef] [PubMed] [Google Scholar]
  • Brkić Bubola K, Lukić M, Mofardin I, Butumović A, Koprivnjak O. 2017. Filtered vs. naturally sedimented and decanted virgin olive oil during storage: Effect on quality and composition. LWT – Food Sci Technol 84: 370–377. [CrossRef] [Google Scholar]
  • Cinquanta L, Esti M, Notte ELA. 1997. Evolution of phenolic compounds in virgin olive oil during storage. J Am Oil Chem Soc 74: 1259–1264. [Google Scholar]
  • Clodoveo ML, Delcuratolo D, Gomes T, Colelli G. 2007. Effect of different temperatures and storage atmospheres on Coratina olive oil quality. Food Chem 102: 571–576. [Google Scholar]
  • Dağdelen A, Tumen G, Ozcan MM, Dundar E. 2013. Phenolics profiles of olive fruits (Olea europaea L.) and oils from Ayvalık, Domat and Gemlik varieties at different ripening stages. Food Chem 136: 41–45. [PubMed] [Google Scholar]
  • EEC Regulation No. 796 of 6 May 2002 on change. E.C. Regulation No. 2568/91. 2002. Off J Eur Commun, L 128/8 15/05/02, Brussels, Belgium. [Google Scholar]
  • Fregapane G, Lavelli V, León S, Kapuralin J, Desamparados Salvador M. 2006. Effect of filtration on virgin olive oil stability during storage. Eur J Lipid Sci Technol 108(2): 134–142. [Google Scholar]
  • García A, Brenes M, García P, Romero C, Garrido A. 2003. Phenolic content of commercial olive oils. Eur Food Res Technol 216: 520–525. [Google Scholar]
  • Gómez-Caravaca AM, Cerratani L, Bendini A, Segura-Carretero A, Fernández-Gutiérrez A, Lercker G. 2007. Effect of filtration systems on the phenolic content in virgin olive oil by HPLC-DAD-MSD. Am J Food Technol 2: 671–678. [Google Scholar]
  • Inarejos-Garcia AM, Androulaki A, Salvador MD, Fregapane G, Tsimidou MZ 2009. Discussion on the objective evaluation of virgin olive oil bitterness. Food Res Int 42: 279–284. [Google Scholar]
  • International Olive Council (IOC) Regulation. 2015. Sensory analysis of olive oil, method for the organoleptic assessment of virgin olive oil, COI/T.20/Doc. No. 15/Rev. 8. [Google Scholar]
  • International Olive Council (IOC) Regulation. 2015. “Spectrophotometric investigation in the ultraviolet”. COI/T.20/Doc. No. 19/Rev. 3. [Google Scholar]
  • International Organization for Standardization. 2016. “Determination of the moisture and volatile matter”. No. 662. [Google Scholar]
  • Lavelli V, Fregapane G, Salvador MD. 2006. Effect of storage on secoiridoid and tocopherol contents and antioxidant activity of monovarietal extra virgin olive oils. J Agric Food Chem 54: 3002–3007. [CrossRef] [PubMed] [Google Scholar]
  • Maga JA. 1978. Simple phenol and phenol compounds in food flavor. Crit Rev Food Sci Nutr 10: 323–372. [Google Scholar]
  • Medjkouh L, Tamendjari A, Keciri S, Santos J, Antónia Nunes M, Oliveira MBP. 2016. Effect of olive fruit fly (Bactrocera oleae) on quality parameters, antioxidant and antibacterial activities of olive oil. Food Funct 1–29. [Google Scholar]
  • Méndez AI, Falqué E. 2007. Effect of storage time and container type on the quality of extra-virgin olive oil. Food Control. [PubMed] [Google Scholar]
  • Montedoro G, Servili M, Baldioli M, Miniati E. 1992. Simple and hydrolyzable phenolic compounds in virgin olive Oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J Agric Food Chem 40: 1571–1576. [Google Scholar]
  • Morelló JR, Motilva MJ, Tovar MJ, Romero MP. 2004. Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem 85: 357–364. [Google Scholar]
  • Mraicha F, Ksantini M, Zouch O, Ayadi M, Sayadi S, Bouaziz M. 2010. Effect of olive fruit fly infestation on the quality of olive oil from Chemlali cultivar during ripening. Food Chem Toxicol 48: 3235–3241. [CrossRef] [PubMed] [Google Scholar]
  • Mulinacci N, Ieri F, Ignesti G, et al. 2013. The freezing process helps to preserve the quality of extra virgin olive oil over time: A case study up to 18 months. Food Res Int 54: 2008–2015. [Google Scholar]
  • Ngai C, Wang S. 2015. Filter or not? A review of the influence of filtration on extra virgin olive oil. UC Davis Olive Center, Igarss 2014: 1–14. [Google Scholar]
  • Nergiz C, Unal K. 1991. Determination of phenol acids in virgin olive oil. Food Chem 39: 237–240. [Google Scholar]
  • Okogeri O, Tasioula-Margari M. 2002. Changes occurring in phenolic compounds and alpha-tocopherol of virgin olive oil during storage. J Agric Food Chem 50: 1077–1080. [CrossRef] [PubMed] [Google Scholar]
  • Psomiadou E, Tsimidou M, Boskou D. 2000. Alpha-tocopherol content of Greek virgin olive oils. J Agric Food Chem 48: 1770–1775. [CrossRef] [PubMed] [Google Scholar]
  • Rastrelli L, Passi S, Ippolito F, Vacca G, Simone F De. 2002. Rate of degradation of r-tocopherol, squalene, phenolics, and polyunsaturated fatty acids in olive oil during different storage conditions. J Agric Food Chem 5566–5570. [CrossRef] [PubMed] [Google Scholar]
  • Romani ANR, Apucci CHL, Antini CLC, Eri FRI, Ulinacci NAM, Isioli FRV. 2007. Evolution of minor polar compounds and antioxidant capacity during storage of bottled extra virgin olive oil. J Agric Food Chem 55: 1315–1320. [CrossRef] [PubMed] [Google Scholar]
  • Sinesio F, Moneta E, Raffo A, et al. 2015. Effect of extraction conditions and storage time on the sensory profile of monovarietal extra virgin olive oil (cv Carboncella) and chemical drivers of sensory changes. LWT – Food Sci Technol 63: 281–288. [CrossRef] [Google Scholar]
  • Tsimidou MZ, Georgiou A, Koidis A, Boskou D. 2005. Loss of stability of “veiled” (cloudy) virgin olive oils in storage. Food Chem 93: 377. [Google Scholar]
  • Venziani G, Esposto S, Minnocci A, et al. 2018. Compositional differences between veiled and filtered virgin olive oils during a simulated shelf life. LWT – Food Sci Technol 94: 87–95. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.