Volume 29, 2022
Lipids from aquatic environments / Lipides issus des milieux aquatiques
Article Number 20
Number of page(s) 12
Published online 13 June 2022
  • Ackman RG. 1988. Some possible effects on lipid biochemistry of differences in the distribution on glycerol of long-chain n-3 fatty acids in the fats of marine fish and marine mammals. Atherosclerosis 70: 171–173. [CrossRef] [PubMed] [Google Scholar]
  • Akanbi TO, Sinclair AJ, Barrow CJ. 2014. Pancreatic lipase selectively hydrolyses DPA over EPA and DHA due to location of double bonds in the fatty acid rather than regioselectivity. Food Chem 160: 61–66. [CrossRef] [PubMed] [Google Scholar]
  • Arterburn LM, Hall EB, Oken H. 2006. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 83: 1467S–1476S. [CrossRef] [PubMed] [Google Scholar]
  • Arterburn LM, Oken HA, Hoffman JP. 2007. Bioequivalence of docosahexaenoic acid from different algal oils in capsules and in a DHA-fortified food. Lipids 42: 1011–1024. [CrossRef] [PubMed] [Google Scholar]
  • Astorg P-O, Bougnoux P, Calvarin J. 2011. Actualisation des apports nutritionnels conseillés pour les acides gras – Version intégrant les modifications apportés par l’erratum du 28 juillet 2011. [Google Scholar]
  • Aursand M, Jørgensen L, Grasdalen H. 1995. Positional distribution of ω3 fatty acids in marine lipid triacylglycerols by high-resolution 13C nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc 72: 293–297. [CrossRef] [Google Scholar]
  • Avis et rapport de l’Anses sur la troisième étude individuelle nationale des consommations alimentaires – INCA 3 (Rapport d’expertise collective No. Saisine 2014-SA-0234). 2017. Paris : ANSES. [Google Scholar]
  • Bai G, Ma C, Chen X. 2021. Phytosterols in edible oil: Distribution, analysis and variation during processing. Grain Oil Sci Technol 4: 33–44. [CrossRef] [Google Scholar]
  • Bardeau T, Savoire R, Cansell M, Subra-Paternault P. 2015. Recovery of oils from press cakes by CO2-based technology. OCL 22: D403. [CrossRef] [EDP Sciences] [Google Scholar]
  • Belarbi EH, Molina E, Chisti Y. 2000. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26: 516–529. [CrossRef] [PubMed] [Google Scholar]
  • Blanchard H, Pédrono F, Boulier-Monthéan N, Catheline D, Rioux V, Legrand P. 2013. Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues. Prostaglandins Leukot Essent Fatty Acids 88: 383–389. [CrossRef] [PubMed] [Google Scholar]
  • Bottino NR, Vandenburg GA, Reiser R. 1967. Resistance of certain long-chain polyunsaturated fatty acids of marine oils to pancreatic lipase hydrolysis. Lipids 2: 489–493. [CrossRef] [PubMed] [Google Scholar]
  • Brockerhoff H, Hoyle RJ, Hwang PC, Litchfield C. 1968. Positional distribution of fatty acids in depot triglycerides of aquatic animals. Lipids 3: 24–29. [CrossRef] [PubMed] [Google Scholar]
  • Burdge GC, Wootton SA. 2002. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr 88: 411–420. [CrossRef] [PubMed] [Google Scholar]
  • Calder PC. 2017. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 45: 1105–1115. [CrossRef] [PubMed] [Google Scholar]
  • Catchpole OJ, Tallon S, Dyer PJ. 2012. Integrated supercritical fluid extraction and bioprocessing. Am J Biochem Biotechnol 8: 263–287. [CrossRef] [Google Scholar]
  • Chang G, Luo Z, Gu S, Wu Q, Chang M, Wang X. 2013. Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresour Technol 142: 255–260. [CrossRef] [Google Scholar]
  • Chen W, Zhou P, Zhu Y. 2016. Improvement in the docosahexaenoic acid production of Schizochytrium sp. S056 by replacement of sea salt. Bioprocess Biosyst Eng 39: 315–321. [CrossRef] [PubMed] [Google Scholar]
  • Chernenko GA, Barrowman JA, Kean KT, Herzberg GR, Keough KM. 1989. Intestinal absorption and lymphatic transport of fish oil (MaxEPA) in the rat. Biochim Biophys Acta 1004: 95–102. [CrossRef] [PubMed] [Google Scholar]
  • Christensen MS, Høy CE. 1996. Effects of dietary triacylglycerol structure on triacylglycerols of resultant chylomicrons from fish oil- and seal oil-fed rats. Lipids 31: 341–344. [CrossRef] [PubMed] [Google Scholar]
  • De Swaaf ME, Sijtsma L, Pronk JT. 2003. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81: 666–672. [CrossRef] [PubMed] [Google Scholar]
  • Doughman SD, Krupanidhi S, Sanjeevi CB. 2007. Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr Diabetes Rev 3: 198–203. [CrossRef] [PubMed] [Google Scholar]
  • Dubuisson C, Carrillo S, Dufour A, Havard S, Pinard P, Volatier J-L. 2017. The French dietary survey on the general population (INCA3) – French Agency on Food, Environmental and Occupational Health and Safety (ANSES) (External scientific report No. EFSA-Q-2011-01277). European Food Safety Authority. [Google Scholar]
  • Dvoretsky D, Dvoretsky S, Temnov M, Akulinin E, Peshkova E. 2016. Enhanced lipid extraction from microalgae Chlorella vulgaris – Biomass: experiments, modelling, optimization. Chem Eng Trans 49: 175–180. [Google Scholar]
  • Dyall SC, Michael-Titus AT. 2008. Neurological benefits of omega-3 fatty acids. NeuroMol Med 10: 219–235. [CrossRef] [PubMed] [Google Scholar]
  • Dyerberg J, Bang HO, Hjorne N. 1975. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 28: 958–966. [CrossRef] [PubMed] [Google Scholar]
  • Fan K-W, Jiang Y, Faan Y-W, Chen F. 2007. Lipid characterization of mangrove thraustochytrid − Schizochytrium mangrovei. J Agric Food Chem 55: 2906–2910. [CrossRef] [PubMed] [Google Scholar]
  • Fournier V, Destaillats F, Juanéda P. 2006. Thermal degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur J Lipid Sci Technol 108: 33–42. [CrossRef] [Google Scholar]
  • Frankel EN, Satué-Gracia T, Meyer AS, German JB. 2002. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions. J Agric Food Chem 50: 2094–2099. [CrossRef] [PubMed] [Google Scholar]
  • Geppert J, Kraft V, Demmelmair H, Koletzko B. 2006. Microalgal docosahexaenoic acid decreases plasma triacylglycerol in normolipidaemic vegetarians: a randomised trial. Br J Nutr 95: 779–786. [CrossRef] [PubMed] [Google Scholar]
  • GOED Omega-3. 2020. 2020 Global EPA and DHA Omega-3 Ingredient MArket Report – 2018 and 2019 data and forecasts through 2022. [Google Scholar]
  • Guerin M, Huntley ME, Olaizola M. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21: 210–216. [CrossRef] [PubMed] [Google Scholar]
  • Halim R, Harun R, Danquah MK, Webley PA. 2012. Microalgal cell disruption for biofuel development. Appl Energy 91: 116–121. [CrossRef] [Google Scholar]
  • Harris WS. 2014. Achieving optimal n-3 fatty acid status: the vegetarian’s challenge… or not. Am J Clin Nutr 100(Suppl 1): 449S–52S. [CrossRef] [PubMed] [Google Scholar]
  • Harwood JL, Guschina IA. 2009. The versatility of algae and their lipid metabolism. Biochimie 91: 679–684. [CrossRef] [PubMed] [Google Scholar]
  • Herrero M, Cifuentes A, Ibañez E. 2006. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem 98: 136–148. [CrossRef] [Google Scholar]
  • Hu F, Clevenger AL, Zheng P, Huang Q, Wang Z. 2020. Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism. Biotechnol Biofuels 13: 172. [Google Scholar]
  • Huo S, Wang Z, Cui F, Zou B, Zhao P, Yuan Z. 2015. Enzyme-assisted extraction of oil from wet microalgae Scenedesmus sp. G4. Energies 8: 8165–8174. [CrossRef] [Google Scholar]
  • Jacobsen C. 2010. Challenges when developing omega-3 enriched foods. OCL 17: 251–258. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kang JX. 2011. Omega-3: a link between global climate change and human health. Biotechnol Adv 29: 388–390. [CrossRef] [PubMed] [Google Scholar]
  • Lane K, Derbyshire E, Li W, Brennan C. 2014. Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: a review of the literature. Crit Rev Food Sci Nutr 54: 572–579. [CrossRef] [PubMed] [Google Scholar]
  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43: 6475–6481. [CrossRef] [PubMed] [Google Scholar]
  • Lenihan-Geels G, Bishop KS, Ferguson LR. 2013. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5: 1301–1315. [CrossRef] [PubMed] [Google Scholar]
  • Leyland B, Leu S, Boussiba S. 2017. Are Thraustochytrids algae? Fungal Biol 121: 835–840. [CrossRef] [PubMed] [Google Scholar]
  • Li J, Pora BLR, Dong K, Hasjim J. 2021. Health benefits of docosahexaenoic acid and its bioavailability: A review. Food Sci Nutr 9: 5229–5243. [CrossRef] [PubMed] [Google Scholar]
  • Liang K, Zhang Q, Cong W. 2012. Enzyme-assisted aqueous extraction of lipid from microalgae. J Agric Food Chem 60: 11771–11776. [CrossRef] [PubMed] [Google Scholar]
  • Lin Y, Xie X, Yuan B. 2018. Optimization of enzymatic cell disruption for improving lipid extraction from Schizochytrium sp. through response surface methodology. J Oleo Sci 67: 215–224. [CrossRef] [PubMed] [Google Scholar]
  • Lopes da Silva T, Moniz P, Silva C, Reis A. 2019. The dark side of microalgae biotechnology: a heterotrophic biorefinery platform directed to ω-3 rich lipid production. Microorganisms 7: E670. [CrossRef] [Google Scholar]
  • Maki KC, Yurko-Mauro K, Dicklin MR, Schild AL, Geohas JG. 2014. A new, microalgal DHA- and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertrigly-ceridemia. Prostaglandins Leukot Essent Fatty Acids 91: 141–148. [CrossRef] [PubMed] [Google Scholar]
  • Medina AR, Grima EM, Giménez AG, González MJI. 1998. Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16: 517–580. [CrossRef] [PubMed] [Google Scholar]
  • Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20: 491–515. [CrossRef] [PubMed] [Google Scholar]
  • Morabito C, Bournaud C, Maës C, 2019. The lipid metabolism in Thraustochytrids. Prog Lipid Res 76: 101007. [CrossRef] [PubMed] [Google Scholar]
  • Nyam KL, Tan CP, Che Man YB, Lai OM, Long K. 2009. Physicochemical properties of Kalahari melon seed oil following extractions using solvent and aqueous enzymatic methods. Int J Food Sci Technol 44: 694–701. [CrossRef] [Google Scholar]
  • Perdana BA, Chaidir Z, Kusnanda AJ, 2021. Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. Algal Res 60: 102542. [CrossRef] [Google Scholar]
  • Porsgaard T, Høy C-E. 2000. Lymphatic transport in rats of several dietary fats differing in fatty acid profile and triacylglycerol structure. J Nutr 130: 1619–1624. [CrossRef] [PubMed] [Google Scholar]
  • Quilodrán B, Cortinez G, Bravo A, Silva D. 2020. Characterization and comparison of lipid and PUFA production by native Thraustochytrid strains using complex carbon sources. Heliyon 6: e05404. [CrossRef] [PubMed] [Google Scholar]
  • Ren L-J, Li J, Hu Y-W, Ji X-J, Huang H. 2013. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp. CCTCC M209059. Korean J Chem Eng 30: 787–789. [CrossRef] [Google Scholar]
  • Ren L-J, Sun L-N, Zhuang X-Y, Qu L, Ji X-J, Huang H. 2014. Regulation of docosahexaenoic acid production by Schizochytrium sp.: effect of nitrogen addition. Bioprocess Biosyst Eng 37: 865–872. [CrossRef] [PubMed] [Google Scholar]
  • Riediger ND, Othman RA, Suh M, Moghadasian MH. 2009. A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109: 668–679. [CrossRef] [PubMed] [Google Scholar]
  • Rosell MS, Lloyd-Wright Z, Appleby PN, Sanders TAB, Allen NE, Key TJ. 2005. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am J Clin Nutr 82: 327–334. [CrossRef] [PubMed] [Google Scholar]
  • Saini RK, Keum Y-S. 2018. Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance – A review. Life Sci 203: 255–267. [CrossRef] [PubMed] [Google Scholar]
  • Sanders TAB, Gleason K, Griffin B, Miller GJ. 2006. Influence of an algal triacylglycerol containing docosahexaenoic acid (22 : 6n-3) and docosapentaenoic acid (22 : 5n-6) on cardiovascular risk factors in healthy men and women. Br J Nutr 95: 525–531. [CrossRef] [PubMed] [Google Scholar]
  • Saunders AV, Davis BC, Garg ML. 2013. Omega-3 polyunsaturated fatty acids and vegetarian diets. Med J Aust 199: S22–26. [CrossRef] [PubMed] [Google Scholar]
  • Schade S, Stangl GI, Meier T. 2020. Distinct microalgae species for food – Part 2: comparative life cycle assessment of microalgae and fish for eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and protein. J Appl Phycol 32: 2997–3013. [CrossRef] [Google Scholar]
  • Sehl A. 2019. Impact de la forme moléculaire et supramoléculaire de vectorisation des acides gras polyinsaturés n-3 sur leur biodisponibilité : étude physico-chimique et in vivo chez le rat. Thèse de doctorat, Bordeaux. [Google Scholar]
  • Silva SM, Sampaio KA, Ceriani R. 2014. Effect of type of bleaching earth on the final color of refined palm oil. LWT – Food Sci. Technol, 10th SLACA – Food Science Impact on Nutrition and Health 59: 1258–1264. [CrossRef] [Google Scholar]
  • Subagio A, Morita N. 2001. Instability of carotenoids is a reason for their promotion on lipid oxidation. Food Res Int 34: 183–188. [CrossRef] [Google Scholar]
  • Sun X-M, Ren L-J, Zhao Q-Y, Ji X-J, Huang H. 2018. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels 11: 272. [CrossRef] [PubMed] [Google Scholar]
  • Vaisali C, Charanyaa S, Belur PD, Regupathi I. 2015. Refining of edible oils: a critical appraisal of current and potential technologies. Int J Food Sci Technol 50: 13–23. [CrossRef] [Google Scholar]
  • Vian MA, Tanzi CD, Chemat F. 2013. Techniques conventionelles et innovantes, et solvants alternatifs pour l’extraction des lipides de micro-organismes. OCL 20: D607. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wang G, Wang T. 2012. Characterization of lipid components in two microalgae for biofuel application. J Am Oil Chem Soc 89: 135–143. [CrossRef] [Google Scholar]
  • Winwood RJ. 2013. Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL 20: D604. [CrossRef] [EDP Sciences] [Google Scholar]
  • Xue Z, Wan F, Yu W, Zhang Z, Liu J, Kou X. 2021. Extraction and evaluation of edible oil from Schizochytrium sp. using an aqueous enzymatic method. Front Agric Sci Eng 8: 623–634. [Google Scholar]
  • Yoshida H, Kumamaru J, Mawatari M, 1996. Lymphatic absorption of seal and fish oils and their effect on lipid metabolism and eicosanoid production in rats. Biosci Biotechnol Biochem 60: 1293–1298. [CrossRef] [PubMed] [Google Scholar]
  • Zeng Y, Ji X-J, Lian M, 2011. Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308. Appl Biochem Biotechnol 164: 249–255. [CrossRef] [PubMed] [Google Scholar]
  • Zschau W. 2001. Bleaching of edible fats and oils. Eur J Lipid Sci Technol 103: 505–551. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.