Sunflower / Tournesol
Open Access
Review
Issue
OCL
Volume 28, 2021
Sunflower / Tournesol
Article Number 34
Number of page(s) 18
DOI https://doi.org/10.1051/ocl/2021020
Published online 04 June 2021
  • Abid S. 2019. Évaluation et déterminants des dégâts provoqués aux grandes cultures par les oiseaux déprédateurs (Mémoire de fin d’études). Université Paris–Créteil Val de Marne. [Google Scholar]
  • Allen TF, Starr TB. 1982. Hierarchy: perspectives for ecological complexity. University of Chicago Press Chicago. [Google Scholar]
  • Aubineau J, Boutin JM, Cuiot O. 2001. Le régime alimentaire du pigeon ramier dans l’ouest de la France. Faune sauvage 253: 54–59. [Google Scholar]
  • Aublet V, Choulet V, Lanthony M, Puget N. 2018. Déprédation du tournesol par les oiseaux: étude du comportement alimentaire des corneilles noire et moyens de lutte (Projet Ingénieurs). AgroSup Dijon. [Google Scholar]
  • Avery ML. 2002. Birds in pest management. In: Encyclopedia of pest management. Marcel Dekker, pp. 104–106. [Google Scholar]
  • Avery ML. 2003. Avian repellants. In: Encyclopedia of agrochemicals. New Jersey, USA: American Cancer Society, pp. 122–129. https://doi.org/10.1002/047126363X.agr028. [Google Scholar]
  • Avery ML, Werner SJ. 2017. Frightening devices. In: Ecology and management of blackbirds (Icteridae) in North America. CRC Press/Taylor & Francis, pp. 159–174. [Google Scholar]
  • Avery ML, Yoder CA, Tillman EA. 2008a. Diazacon inhibits reproduction in invasive monk parakeet populations. J Wildl Manage 72: 1449–1452. https://doi.org/10.2193/2007-391. [Google Scholar]
  • Avery ML, Yoder CA, Tillman EA. 2008b. Diazacon inhibits reproduction in invasive monk parakeet populations. J Wildl Manage 72(6): 1449–1452. [Google Scholar]
  • Baglione V, Marcos JM, Canestrari D. 2002. Cooperatively breeding groups of carrion crow (Corvus corone) in Northern Spain. Auk 119: 790–799. https://doi.org/10.1093/auk/119.3.790. [Google Scholar]
  • Baumgartner JA, Kross S, Heath S, Connor S. 2019. Supporting beneficial birds and managing pest birds. Wild Farm Alliance. [Google Scholar]
  • Bennett ATD, Cuthill IC. 1994. Ultraviolet vision in birds: What is its function? Vision Res Biol Ultraviol Recept 34: 1471–1478. https://doi.org/10.1016/0042-6989(94)90149-X. [Google Scholar]
  • Benvenuti S, Wallraff HG. 1985. Pigeon navigation: Site simulation by means of atmospheric odours. J Comp Physiol 156: 737–746. https://doi.org/10.1007/BF00610827. [Google Scholar]
  • Bernardos J, Farrel M. 2012. Evaluación del daño por la paloma torcaza (Zenaida auriculata) en girasol y pérdida de cosecha en la provincia de La Pampa, campaña 2011–2012 (Internal Report). Estación Experimental Anguil, INTA. [Google Scholar]
  • Bishop J, McKay H, Parrott D, Allan J. 2003. Review of international research literature regarding the effectiveness of auditory bird scaring techniques and potential alternatives. York, UK: Food and Rural Affairs. [Google Scholar]
  • Blackwell B, Dolbeer RA. 2001. Decline of the red-winged blackbird population in Ohio correlated to changes in agriculture (1965–1996). J Wildl Manage 65: 661–667. [Google Scholar]
  • Blackwell BF, Bernhardt GE, Dolbeer RA. 2002. Lasers as nonlethal avian repellents. J Wildl Manage 66: 250–258. https://doi.org/10.2307/3802891. [Google Scholar]
  • Bomford M. 1990. Ineffectiveness of a sonic device for deterring starlings. Wildl Soc Bull (1973-2006) 18: 151–156. [Google Scholar]
  • Bomford M, O’Brien PH. 1990. Sonic deterrents in animal damage control: a review of device tests and effectiveness. Wildl Soc Bull (1973-2006) 18: 411–422. [Google Scholar]
  • Bruggers RL, Rodriguez E, Zaccagnini ME. 1998. Planning for bird pest problem resolution: a case study. Int Biodeterior Biodegr 42: 173–184. https://doi.org/10.1016/S0964-8305(98)00046-8. [Google Scholar]
  • Bucher EH. 1992. The causes of extinction of the Passenger Pigeon. In: Power DM, ed. Current ornithology, current ornithology. Boston, MA: Springer US, pp. 1–36. https://doi.org/10.1007/978-1-4757-9921-7_1. [Google Scholar]
  • Canavelli SB, Branch LC, Cavallero P, González C, Zaccagnini ME. 2014. Multi-level analysis of bird abundance and damage to crop fields. Agric Ecosyst Environ 197: 128–136. https://doi.org/10.1016/j.agee.2014.07.024. [Google Scholar]
  • Clark L. 1995. A review of the bird repellent effects of 1:17 carbocyclic compounds. In: National Wildlife Research Center Repellents Conference 1995. [Google Scholar]
  • Clark L. 1998. Review of bird repellents. Proc Vertebrate Pest Conf 18: 330–337. https://doi.org/10.5070/V418110214. [Google Scholar]
  • Clark L, Shah P. 1994. Tests and refinements of a general structure-activity model for avian repellents. J Chem Ecol 20: 321–339. https://doi.org/10.1007/BF02064441. [CrossRef] [PubMed] [Google Scholar]
  • Clark L, Hagelin J, Werner S. 2015. Chapter 7 – The chemical senses in birds. In: Scanes CG, ed. Sturkie’s Avian Physiology, 6th ed. San Diego: Academic Press, pp. 89–111. https://doi.org/10.1016/B978-0-12-407160-5.00007-5. [Google Scholar]
  • Clergeau P. 1995. Importance of multiple scale analysis for understanding distribution and for management of an agricultural bird pest. Lands Urban Plan 31: 281–289. https://doi.org/10.1016/0169-2046(94)01053-B. [Google Scholar]
  • Clergeau P. 2014. Recherche en sciences de l’écologie pour une meilleure maitrise de la faune sauvage du parc de Sceaux (perruche à collier et mammifères terrestres) – Lot 1 : L’invasion de l’espèce exostique, la Perruche à coller (Psittacula krameri). [Google Scholar]
  • Clergeau P, Mandon Dalger I, Georger S. 2002. Mise en place d’une gestion intégrée d’un oiseau ravageur des cultures à la Réunion. Ingénieries eau-agriculture-territoires 30: 71–80. [Google Scholar]
  • Collective. 1967. La protection des cultures contre les oiseaux, Association de coordination technique agricole. Paris : Ed. Collection Phytosanitaire. [Google Scholar]
  • Collective. 2011. Bases para disminuir el daño por palomas en cultivos extensivos. Estacion Experimental Egropecuaria Parana del INTA. ed, Serie Extension. [Google Scholar]
  • Conover MR, Dolbeer RA. 1989. Reflecting tapes fail to reduce blackbird damage to ripening cornfields. Wildl Soc Bull (1973-2006) 17: 441–443. [Google Scholar]
  • Cotterill JV, Nadian AK, Cowan DP. 2004. Improving the persistence of a formulation of the avian repellent cinnamamide, for the protection of autumn-sown oilseed rape. Pest Manage Sci 60: 1019–1024. https://doi.org/10.1002/ps.911. [Google Scholar]
  • Cummings JL, Knittle CE, Guarino JL. 1986. Evaluating a pop-up scarecrow coupled with a propane exploder for reducing blackbird damage to ripening sunflower. In: Proceedings of the 12th Vertebrate Pest Conference 1986. [Google Scholar]
  • Cummings JL, Guarino JL, Knittle CE. 1989. Chronology of blackbird damage to sunflowers. Wildl Soc Bull 17: 50–52. [Google Scholar]
  • De Grazio JW. 1978. World bird damage problems. In: Proceedings of the 8th Vertebrate Pest Conference, University of California, Davis, USA. [Google Scholar]
  • de Mey Y, Demont M, Diagne M. 2012. Estimating bird damage to rice in africa: evidence from the Senegal River Valley. J Agric Econ 63: 175–200. https://doi.org/10.1111/j.1477-9552.2011.00323.x. [Google Scholar]
  • DeLiberto ST, Werner SJ. 2016. Review of anthraquinone applications for pest management and agricultural crop protection. Pest Manage Sci 72: 1813–1825. [Google Scholar]
  • Dolbeer R, Linz G. 2016. Blackbirds, Wildlife Damage Management Technical Series. U.S. Department of Agriculture, Animal & Plant Health Inspection Service, Wildlife Services. [Google Scholar]
  • Douville de Franssu. 1997. Avenir des répulsifs chimiques. In: Oiseaux à risques en ville et en campagne. Un point sur. Paris : INRA Editions, pp. 317–332. [Google Scholar]
  • Dufour V, Wascher CAF, Braun A, Miller R, Bugnyar T. 2012. Corvids can decide if a future exchange is worth waiting for. Biol Lett 8: 201–204. https://doi.org/10.1098/rsbl.2011.0726. [CrossRef] [PubMed] [Google Scholar]
  • Egan CC, Blackwell BF, Fernández-Juricic E, Klug PE. 2020. Testing a key assumption of using drones as frightening devices: Do birds perceive wildlife-monitoring drones as risky? Condor 122: 1–15. [Google Scholar]
  • Eisemann JD, Werner SJ, O’hare JR. 2011. Registration considerations for chemical bird repellents in fruit crops. Outl Pest Manage 22(2): 87–91. [Google Scholar]
  • Emery NJ, Clayton NS. 2004. The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306: 1903–1907. https://doi.org/10.1126/science.1098410. [CrossRef] [PubMed] [Google Scholar]
  • Erickson WA, Marsh RE, Salmon TP. 1990. A review of falconry as a bird-hazing technique. In: Proceedings of the 14th Vertebrate Pest Conference, pp. 314–316. [Google Scholar]
  • Ernst K, Elser J, Linz G, et al. 2019. The economic impacts of blackbird (Icteridae) damage to sunflower in the USA. Pest Manage Sci 75: 2910–2915. https://doi.org/10.1002/ps.5486. [Google Scholar]
  • Esther A, Tilcher R, Jacob J. 2013. Assessing the effects of three potential chemical repellents to prevent bird damage to corn seeds and seedlings. Pest Manage Sci 69: 425–430. [Google Scholar]
  • Géroudet P. 2010. Les passereaux d’Europe, 5e éd. Paris : Ed. Delachaux et Niestlé. [Google Scholar]
  • Gilsdorf JM, Hygnstrom SE, VerCauteren KC. 2002. Use of frightening devices in wildlife damage management. Integr Pest Manage Rev 7: 29–45. https://doi.org/10.1023/A:1025760032566. [Google Scholar]
  • Hagy HM, Linz GM, Bleier WJ. 2008. Optimizing the use of decoy plots for blackbird control in commercial sunflower. Crop Protect 27: 1442–1447. https://doi.org/10.1016/j.cropro.2008.07.006. [Google Scholar]
  • Harris RE, Davis RA. 1998. Evaluation of the efficacy of products and technique for airport bird control. LGL Limited Environmental Research Associates. [Google Scholar]
  • Hunter F. 1974. Preliminary practical assessments of some bird scaring methods against wood-pigeons. Ann Appl Biol 76: 351–353. [Google Scholar]
  • Inglis IR, Isaacson AJ, Thearle RJP, Westwood NJ. 1990. The effects of changing agricultural practice upon Woodpigeon Columba palumbus numbers. Ibis 132: 262–272. https://doi.org/10.1111/j.1474-919X1990.tb01044.x. [Google Scholar]
  • Kaiser BA. 2019. Chemical repellents for reducing blackbird damage: the importance of plant structure and avian behavior in field applications. Environmental and Conservation Sciences (Biological Sciences). Fargo, ND USA, North Dakota State University. MS Biology: 97. [Google Scholar]
  • Kasprzykowski Z. 2003. Habitat preferences of foraging rooks Corvus frugilegus during the breeding period in the agricultural landscape of Eastern Poland. Acta Ornithol 38: 27–31. https://doi.org/10.3161/068.038.0107. [Google Scholar]
  • Khaleghizadeh A. 2011. Effect of morphological traits of plant, head and seed of sunflower hybrids on house sparrow damage rate. Crop Protect 30: 360–367. https://doi.org/10.1016/j.cropro.2010.12.023. [Google Scholar]
  • Klosterman ME, Linz GM, Slowik AA, Homan HJ. 2013. Comparisons between blackbird damage to corn and sunflower in North Dakota. Crop Protect 53: 1–5. https://doi.org/10.1016/j.cropro.2013.06.004. [Google Scholar]
  • Klug P. 2017. The future of blackbird management research. In: Linz GM, Avery ML, Dolbeer RA, eds. Ecology and Management of Blackbirds (Icteridae) in North America. Boca Raton: CRC Press, pp. 217–237. [Google Scholar]
  • Kyveryga PM, Mueller TA, Mueller DS. 2018. On-farm replicated strip trials. Precis Agric Basics 189–208. https://doi.org/10.2134/precisionagbasics.2016.0096. [Google Scholar]
  • Laundre JW, Hernandez L, Ripple WJ. 2010. The landscape of fear: ecological implications of being afraid. Open Ecol J 3: 1–7. https://doi.org/10.2174/1874213001003030001. [Google Scholar]
  • Laurent A, Kyveryga P, Makowski D, Miguez F. 2019. A framework for visualization and analysis of agronomic field trials from on-farm research networks. Agron J 111: 2712–2723. https://doi.org/10.2134/agronj2019.02.0135. [Google Scholar]
  • Lindell C, Eaton RA, Howard PH, Roels SM, Shave ME. 2018. Enhancing agricultural landscapes to increase crop pest reduction by vertebrates. Agric Ecosyst Environ 257: 1–11. https://doi.org/10.1016/j.agee.2018.01.028. [Google Scholar]
  • Linz GM, Hanzel JJ. 1997. Birds and sunflower. Sunfl Technol Prod Agron Monogr 381–394. https://doi.org/10.2134/agronmonogr35.c7. [Google Scholar]
  • Linz GM, Hanzel JJ. 2015. Sunflower bird pests. Sunfl: Chem Prod Process Utilizat 175–186. [Google Scholar]
  • Linz GM, Homan HJ. 2011. Use of glyphosate for managing invasive cattail (Typha spp.) to disperse blackbird (Icteridae) roosts. Crop Protect 30: 98–104. https://doi.org/10.1016/j.cropro.2010.10.003. [Google Scholar]
  • Linz GM, Homan HJ, Werner SJ, Hagy HM, Bleier WJ. 2011. Assessment of bird-management strategies to protect sunflowers. BioScience 61: 960–970. https://doi.org/10.1525/bio.2011.61.12.6. [Google Scholar]
  • Linz GM, Homan HJ, Werner S, Carlson JC, Bleier WJ. 2012. Sunflower growers use nonlethal methods to manage blackbird damage. In: Proceedings of the 14th Wildlife Damage Management Conference. [Google Scholar]
  • Linz GM, Bucher EH, Canavelli SB, Rodriguez E, Avery ML. 2015. Limitations of population suppression for protecting crops from bird depredation: a review. Crop Protect 76: 46–52. https://doi.org/10.1016/j.cropro.2015.06.005. [Google Scholar]
  • Linz GM, Avery ML, Dolbeer RA. 2017. Ecology and management of blackbirds (Icteridae) in North America. Boca Raton, Florida, USA: CRC Press. [Google Scholar]
  • Lormée H, Aubry P. 2018. Estimation des tableaux de chasse de colombidés en France pour la saison 2013–2014. Faune sauvage 318: 15–22. [Google Scholar]
  • Marchand A. 2019. Sélection d’habitat d’alimentation par les pigeons ramiers urbains (Master Ecologie-Ethologie). Université Jean Monnet Saint Etienne. [Google Scholar]
  • Marsh RE. 2008. A history of the Vertebrate Pest Conference. In: Proc. 23rd Vertebr. Pest Conf, pp. 310–326. [Google Scholar]
  • Mason CF, Mac Donald SM. 2004. Distribution of foraging rooks, Corvus frugilegus, and rookeries in a landscape in eastern England dominated by winter cereals. Folia Zool 53: 179–188. [Google Scholar]
  • Mason JR, Reidinger RF. 1983. Importance of color for methiocarb-induced food aversions in red-winged blackbirds. J Wildl Manage 47: 383–393. https://doi.org/10.2307/3808511. [Google Scholar]
  • Murton RK. 1965. The wood-pigeon. The new naturalist. Collins. [Google Scholar]
  • Murton RK, Westwood NJ, Isaacson AJ. 1964. A preliminary investigation of the factors regulating population size in the woodpigeon Columba palumbus. Ibis 106: 482–507. https://doi.org/10.1111/j.1474-919X1964.tb03729.x. [Google Scholar]
  • Négrier C. 2018. Étude expérimentale du régime alimentaire du pigeon ramier dans les régions du Sud-ouest de la France en période de migration et d’hivernage (2014–2017) (Thèse d’exercice, Médecine vétérinaire). École Nationale Vétérinaire de Toulouse. [Google Scholar]
  • Okurut-Akol FH, Dolbeer RA, Woronecki PP. 1990. Red-winged blackbird and starling feeding responses on corn earworm-infested corn. In: Proceedings of the 14th Vertebrate Pest Conference 1990, pp. 296–301. [Google Scholar]
  • Osorio D, Vorobyev M. 2008. A review of the evolution of animal colour vision and visual communication signals. Vision Res Rev 48: 2042–2051. https://doi.org/10.1016/j.visres.2008.06.018. [Google Scholar]
  • Otis DL, Kilburn CM. 1988. Influence of environmental factors on blackbird damage to sunflower (No. Tech. Rep. 16). U.S. Fish. Wildl. Serv. [Google Scholar]
  • Parrot D, Sugoto R, Bellamy F, Bronwen D. 2014. A review of the woodpigeon costs to brassicas, salad crops and oilseed rape and the effectiveness of management strategies. Sand Hutton, York: National Wildlife Management Center, Animal & Plant Health Agency. [Google Scholar]
  • Robin N. 2011. Dégâts d’oiseaux sur grandes cultures − 2750 agriculteurs témoignent. Perspectives agricoles 375: 30–33. [Google Scholar]
  • Santilli F, Azara S, Galardi L, Gorreri L, Perfetti A, Bagliacca M. 2012. Evaluation of an aerial scaring device for bird damage prevention to agricultural crops. Rivista Italiana di Ornitologia 82. [CrossRef] [Google Scholar]
  • Sausse C. 2016. Enquête Terres Inovia sur les dégâts d’oiseaux et petits gibiers − résultats de la campagne 2016. Terres Inovia. [Google Scholar]
  • Sausse C, Robert C. 2017. Le pigeon ramier, principal bioagresseur du tournesol. Phytoma 704: 34–38. [Google Scholar]
  • Sausse C, Bouquet C, Anstett L. 2017. Lutter contre les vertébrés déprédateurs des grandes cultures : point sur la réglementation. Terres Inovia & Fédération Nationale des chasseurs. [Google Scholar]
  • Sausse C, Chevalot A, Lévy M. 2021. Hungry birds are a major threat for sunflower seedlings in France. Crop Protect (in press). [Google Scholar]
  • Schafer EW, Bowles WA, Hurlbut J. 1983. The acute oral toxicity, repellency, and hazard potential of 998 chemicals to one or more species of wild and domestic birds. Arch Environ Contam Toxicol 12: 355–382. https://doi.org/10.1007/BF01059413. [Google Scholar]
  • Schaub M, Kéry M, Birrer S, Rudin M, Jenni L. 2011. Habitat-density associations are not geographically transferable in Swiss farmland birds. Ecography 34: 693–704. https://doi.org/10.1111/j.1600-0587.2011.06584.x. [Google Scholar]
  • Schmid N. 2012. Comment protéger le maïs bio contre les corneilles ? [WWW Document]. URL https://www.bioactualites.ch/cultures/grandes-cultures-bio/mais/mais-ballons-contre-corbeaux.html (accessed 1/11/20). [Google Scholar]
  • Tayleur JR, Henderson IG. 2007. Strategy framework to identify and evaluate methods of reducing damage to brassica crops by woodpigeons, Columba palumbus. British Trust for Ornithology. [Google Scholar]
  • Teyssèdre A. 2016. Biodiversité : le paradoxe du pigeon ramier. Pour la Science 465: 36–41. [Google Scholar]
  • Vitti D, Zuil S. 2012. Evaluaciones del dano generado por aves en girasol. voces y Ecos 29: 11–13. [Google Scholar]
  • Wang Z, Lucas A, Wong KC, Charmitoff G. 2017. Biomimetic design for pest bird control UAVs: A survey. In: 17th Australian International Aerospace Congress, AIAC 2017, pp. 469–476. [Google Scholar]
  • Wenny DG, Devault TL, Johnson MD, et al. 2011. The need to quantify ecosystem services provided by birds. Auk 128: 1–14. https://doi.org/10.1525/auk.2011.10248. [Google Scholar]
  • Werner SJ, Linz GM, Tupper SK, Carlson JC. 2010. Laboratory efficacy of chemical repellents for reducing blackbird damage in rice and sunflower crops. J Wildl Manage 74 6): 1400–1404. [Google Scholar]
  • Werner SJ, Linz GM, Carlson JC, Pettit SE, Tupper SK, Santer MM. 2011. Anthraquinone-based bird repellent for sunflower crops. Appl Anim Behav Sci 129(2-4): 162–169. [Google Scholar]
  • Werner SJ, et al. 2019. Application strategy for an anthraquinone-based repellent and the protection of soybeans from Canada goose depredation. Human–Wildl Interact 13(2):15. [Google Scholar]
  • Whittingham MJ, Krebs JR, Swetnam RD, Vickery JA, Wilson JD, Freckleton RP. 2007. Should conservation strategies consider spatial generality? Farmland birds show regional not national patterns of habitat association. Ecol Lett 10: 25–35. https://doi.org/10.1111/j.1461-0248.2006.00992.x. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.