Open Access
Issue |
OCL
Volume 28, 2021
Sunflower / Tournesol
|
|
---|---|---|
Article Number | 33 | |
Number of page(s) | 11 | |
Section | Agronomy | |
DOI | https://doi.org/10.1051/ocl/2021021 | |
Published online | 26 May 2021 |
- Ajmone Marsan P, Castiglioni P, Fusari F, Kuiper M, Motto M. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96(2): 219–227. https://doi.org/10.1007/s001220050730. [Google Scholar]
- Ayaz U, Khan MF, Bashir S. 2014. Investigation of genetic divergence in local sunflower hybrids and inbred lines by applying morphological markers. Int J Agron Agric Res 5(2): 154–163. [Google Scholar]
- Cadic E, Coque M, Vear F, et al. 2013. Combined linkage and association mapping of flowering time in sunflower (Helianthus annuus L.). Theor Appl Genet 126(5): 1337–1356. https://doi.org/10.1007/s00122-013-2056-2. [PubMed] [Google Scholar]
- Charrad M, Ghazzali N, Boiteau V, Niknafs A. 2014. Nbclust: An R package for determining the relevant number of clusters in a data set. J Stat Softw 61(6): 1–36. https://doi.org/10.18637/jss.v061.i06. [Google Scholar]
- Cheres MT, Knapp SJ. 1998. Ancestral origins and genetic diversity of cultivated sunflower: coancestry analysis of public germplasm. Crop Sci 38(6): 1476–1482. https://doi.org/10.2135/cropsci1998.0011183x003800060012x. [Google Scholar]
- Cheres MT, Miller JF, Crane JM, Knapp SJ. 2000. Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor Appl Genet 100(6): 889–894. https://doi.org/10.1007/s001220051366. [Google Scholar]
- Darvishzadeh R. 2012. Phenotypic and molecular marker distance as a tool for prediction of heterosis and F1 performance in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Austral J Crop Sci 6(4): 732–738. [Google Scholar]
- Dias dos Santos LA, de Toledo Picoli EA, Barros Rocha R, Alfenas AC. 2004. A priori choice of hybrid parents in plants. Genet Mol Res: GMR 3(3). www.funpecrp.com.br. [Google Scholar]
- Dudhe MY, Mulpuri S, Meena HP, Ajjanavara RRG, Kodeboyina VS, Adala VR. 2019. Genetic variability, diversity and identification of trait-specific accessions from the conserved sunflower germplasm for exploitation in the breeding programme. Agric Res. https://doi.org/10.1007/s40003-019-00406-w. [Google Scholar]
- Fick G, Miller J. 1997. Sunflower breeding. In: Schneiter AA, ed. Sunflower technology and production. Madison, Wisconsin, USA. [Google Scholar]
- Filippi CV, Merino GA, Montecchia JF, et al. 2020. Genetic diversity, population structure and linkage disequilibrium assessment among international sunflower breeding collections. Genes 11(3). https://doi.org/10.3390/genes11030283. [Google Scholar]
- Filippi CV, Aguirre N, Rivas JG, et al. 2015. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol 15(1). https://doi.org/10.1186/s12870-014-0360-x. [Google Scholar]
- Franco TL, Hidalgo R. 2003. Análisis estadístico de datos de caracterización morfológica de recursos fitogenéticos. IBPGR 89. https://www.bioversityinternational.org/fileadmin/_migrated/uploads/tx_news/Análisis_estadístico_de_datos_de_caracterización_morfológica_de_recursos_fitogenéticos_894.pdf. [Google Scholar]
- González J, Mancuso N, Alvarez D, Cordes D, Vázquez A. 2015. Contribution of the Argentine germplasm to the improvement of sunflower. Helia 38(62): 121–140. Institute of Field and Vegetable Crops. https://doi.org/10.1515/helia-2014-0026. [Google Scholar]
- Grandlund M, Zimmerman DC. 1975. Effects of drying conditions on oil content of sunflower (Helianthus annuus L.) seeds as determined by wideline nuclear magnetic resonance (NMR). Proc North Dakota Acad Sci 27: 128–132. [Google Scholar]
- Hernández F, Presotto A, Poverene M, Mandel JR. 2019. Genetic diversity and population structure of wild sunflower (Helianthus annuus L.) in Argentina: reconstructing its invasion history. J Hered 110(6): 746–759. https://doi.org/10.1093/jhered/esz047. [Google Scholar]
- Hladni N, Terzic S, Mutavdžic B, Zoric M. 2017. Classification of confectionary sunflower genotypes based on morphological characters. J Agric Sci 155(10): 1594–1609. https://doi.org/10.1017/S0021859617000739. [Google Scholar]
- Hladni N, Zorić M, Terzić S, et al. 2018. Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm. Euphytica 214(7). https://doi.org/10.1007/s10681-018-2197-0. [Google Scholar]
- Hongtrakul V, Huestis GM, Knapp SJ. 1997. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theor Appl Genet 95(3): 400–407. https://doi.org/10.1007/s001220050576. [Google Scholar]
- IBPGR - Int. Board Plant Genet. Resour. 1985. Sunflower descriptors. https://www.bioversityinternational.org/fileadmin/user_upload/Descriptors_sunflower.pdf. [Google Scholar]
- Kassambara A, Mundt F. 2020. Factoextra: extract and visualize the results of multivariate data analyses. https://cran.r-project.org/package=factoextra. [Google Scholar]
- Lê S, Josse J, Husson F. 2008. FactoMineR: An R package for multivariate analysis. J Stat Softw 25(1): 18. [Google Scholar]
- Leclercq P. 1969. Une sterilite male cytoplasmique chez le tournesol. Ann Amel Plantes 19: 99–106. https://ci.nii.ac.jp/naid/10005384804. [Google Scholar]
- Lochner TC. 2011. Prediction of heterotic groups and hybrid performance in South African Sunflower (Helianthus annuus L.) germplasm using SSR analysis. (Issue November). South Africa: University of the Free State. [Google Scholar]
- Mandel JR, Dechaine JM, Marek LF, Burke JM. 2011. Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123(5): 693–704. https://doi.org/10.1007/s00122-011-1619-3. [Google Scholar]
- Melchinger AE. 1999. Genetic diversity and heterosis. In: Genetics and exploitation of heterosis in crops, pp. 99–118. https://doi.org/10.2134/1999.geneticsandexploitation.c10. [Google Scholar]
- Melchinger AE, Gumber RK. 2015. Overview of heterosis and heterotic groups in agronomic crops, Issue 25, pp. 29–44. https://doi.org/10.2135/cssaspecpub25.c3. [Google Scholar]
- Meredith WR, Brown JS. 1998. Heterosis and combining ability of cottons originating from different regions of the United States. J Cotton Sci 2(2): 77–84. [Google Scholar]
- Miller JF. 1999. Oilseeds and heterosis. In: Genetics and exploitation of heterosis in crops, pp. 399–404. https://doi.org/10.2134/1999.geneticsandexploitation.c37. [Google Scholar]
- Oksanen AJ, Blanchet FG, Friendly M, et al. 2018. Vegan: Community Ecology Package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists, Issue 25(1). https://cran.r-project.org/package=veganER-. [Google Scholar]
- Palacio F, Apodaca M, Crisci J. 2020. ANÁLISIS MULTIVARIADO PARA DATOS BIOLÓGICOS Teoría y su aplicación utilizando el lenguaje R. Vazquez Mazzini Editores. [Google Scholar]
- Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528. [Google Scholar]
- Peeters JP, Martinelli JA. 1989. Hierarchical cluster analysis as a tool to manage variation in germplasm collections. Theor Appl Genet 78(1): 42–48. https://doi.org/10.1007/BF00299751. [Google Scholar]
- Pilorgé E. 2020. Sunflower in the global vegetable oil system: situation, specificities and perspectives. OCL 27(1): 34. https://doi.org/10.1051/ocl/2020028. [EDP Sciences] [Google Scholar]
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. https://www.r-project.org/. [Google Scholar]
- Rama Subrahmanyam SVRM, Sudheer Kumar S, Ranganatha ARGR. 2003. Genetic divergence for seed parameters in sunflower (Helianthus annuus L.). Helia 26(38): 73–80. https://doi.org/10.2298/hel0338073s. [Google Scholar]
- Reif JC, Zhao Y, Würschum T, Gowda M, Hahn V. 2013. Genomic prediction of sunflower hybrid performance. Plant Breed 132(1): 107–114. https://doi.org/10.1111/pbr.12007. [Google Scholar]
- Ringnér M. 2008. What is principal component analysis? Nat Biotechnol 26(3): 303–304. https://doi.org/10.1038/nbt0308-303. [Google Scholar]
- Sant VJ, Patankar AG, Sarode ND, et al. 1999. Potential of DNA markers in detecting divergence and in analysing heterosis in Indian elite chickpea cultivars. Theor Appl Genet 98(8): 1217–1225. https://doi.org/10.1007/s001220051187. [Google Scholar]
- Schneiter AA, Miller JF. 1981. Description of sunflower growth stages 1. Crop Sci 21(6): 901–903. https://doi.org/10.2135/cropsci1981.0011183x002100060024x. [Google Scholar]
- Terzić S, Zorić M, Seiler GJ. 2020. Qualitative traits in sunflower breeding: UGA-SAM1 phenotyping case study. Crop Sci 60(1): 303–319. https://doi.org/10.1002/csc2.20059. [Google Scholar]
- Vear F, Miller JF. 1993. Sunflower. In: Traditional crop breeding practices: an historical review to serve as a baseline for assessing the role of modern biotechnology, pp. 95–111. https://doi.org/10.2134/agronmonogr36.c17. [Google Scholar]
- Venables WN, Ripley BD. 2002. Modern applied statistics with S, 4th ed. Springer. https://www.stats.ox.ac.uk/pub/MASS4/. [Google Scholar]
- Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.