Open Access
Issue
OCL
Volume 26, 2019
Article Number 19
Number of page(s) 7
Section Nutrition - Health
DOI https://doi.org/10.1051/ocl/2019018
Published online 12 April 2019
  • Adebayo SE, Orhevba BA, Adeoye PA, Musa JJ, Fase OJ. 2012. Solvent extraction and characterization of oil from African star apple (Chrysophyllum albidum) seeds. Acad Res Int 3(2): 178. [Google Scholar]
  • Agomuo E, Amadi P, Ogunka-Nnoka C, Amadi B, Ifeanacho M, Njoku U. 2017. Characterization of oils from Duranta repens leaf and seed. OCL 24(6): A601. [CrossRef] [EDP Sciences] [Google Scholar]
  • Akanni MS, Adekunle SA, Oluyemi EA. 2005. Physicochemical properties of some non-conventional oilseeds. J Food Tech 3(2): 177–181. [Google Scholar]
  • Alimentarius C. 1999. Codex standard for named vegetable oils. Codex Stan 210: 1–13. [Google Scholar]
  • Andersen PC, Gorbet DW. 2002. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J Agric Food Chem 50: 1298–1305. [CrossRef] [PubMed] [Google Scholar]
  • Aniołowska M, Zahran H, Kita A. 2016. The effect of pan frying on thermooxidative stability of refined rapeseed oil and professional blend. J Food Sci Tech 53(1): 712–720. [CrossRef] [Google Scholar]
  • AOAC. 1995. Official methods of analysis. Washington: Association of Official Analytical Chemists. [Google Scholar]
  • Arioglu HH. 2014. The oil crops growing and breeding. The Publication of University of Cukurova, Faculty of Agriculture, Faculty number: 220, Book Number: A-70, Adana-Turkey, p. 204. [Google Scholar]
  • Arya SS, Ramanujam S, Vijayaraghavan PK. 1969. Refractive index as an objective method for evaluation of rancidity in edible oils and fats. J Am Oil Chem Soc 46(1): 28–30. [Google Scholar]
  • Bello MO, Olawore NO. 2012. Potentials of two uncultivated plants in nutrition and industrial development. Adv Food Energy Secur 2:10–16. [Google Scholar]
  • Carrín ME, Carelli AA. 2010. Peanut oil: Compositional data. Euro J Lipid Sci Tech 112(7): 697–707. [CrossRef] [Google Scholar]
  • Castro C, Leite RMVBC. 2018. Main aspects of sunflower production in Brazil. OCL 25(1): D104. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chaiyadee S, Jogloy S, Songsri P, et al. 2013. Soil moisture affects fatty acids and oil quality parameters in peanut. Int J Plant Prod 7(1): 81–96. [Google Scholar]
  • Dhamsaniya NK, Patel NC, Dabhi MN. 2012. Selection of groundnut variety for making a good quality peanut butter. J Food Sci Tech 49(1): 115–118. [CrossRef] [Google Scholar]
  • Elabd EMY, Zahran HA, Abdalla AM. 2017. A comparative study of the effects of three Moringa species on obesity-induced oxidative stress state in liver tissue. Int J Pharma Bio Sci 8: 572–584. [Google Scholar]
  • El-Badrawy EEY, El-Zainy ARM, Shalaby AO, El-Sayed NY. 2007. Effect of microwave roasting on chemical composition of peanut seeds and comparing it with the ordinary roasting process. Proceedings of Annual Conference Credit and Accreditation. Vol. 11., pp. 939–956, Mansoura University, Egypt. [Google Scholar]
  • Escobedo RV, Luna PH, Torres ICJ, Mopreno AO, Ramirez MCR. 2015. Physicochemical properties and fatty acid profile of eight peanut varieties grown in Mexico. CyTA J Food 13: 300–304. [CrossRef] [Google Scholar]
  • Eshun G, Amankwah EA, Barimah J. 2013. Nutrients content and lipid characterization of seed pastes of four selected peanut (Arachis hypogaea L.) varieties from Ghana. Afr J Food Sci 7(10): 375–381. [CrossRef] [Google Scholar]
  • Estiasih T, Ahmadi K, Widyaningsih TD, et al. 2014. The effect of unsaponifiable fraction from palm fatty acid distillate on lipid profile of hypercholesterolaemia rats. J Food Nutr Res 2: 1029–1036. [CrossRef] [Google Scholar]
  • Gulluoglu L, Bakal H, Onat B, El Sabagh A, Arioglu H. 2016. Characterization of peanut (Arachis hypogaea L.) seed oil and fatty acids composition under different growing season under Mediterranean environment. J Exp Biol Agric Sci 4(5S): 564–571. [Google Scholar]
  • Hassan F, Ahmed M. 2012. Oil and fatty acid composition of peanut cultivars grown in Pakistan. Pak J Bot 44(2): 627–630. [Google Scholar]
  • Hassan SW, Umar RA, Ebbo AA, Matazu IK. 2005. Phytochemical, antibacterial and toxicity studies of Parkinsonia aculeate L. (Fabaceae). Niger J Biochem Mol Biol 20(2): 89–97. [Google Scholar]
  • Isleib TG, Tilman BL, Patte HE, Sanders TH, Hendrix KW, Dean LO. 2008. Genotype-by-environment interaction for seed composition traits of breeding lines in the uniform peanut performance test. Peanut Sci 35: 130–138. [CrossRef] [Google Scholar]
  • Megat-Rusydi MR, Noraliza CW, Azrina A, Zulkhairi A. 2011. Nutritional changes in germinated legumes and rice varieties. Int Food Res J 18(2): 705–713. [Google Scholar]
  • Mohamed FA, Salama HH, El-Sayed SM, El-Sayed, HS, Zahran HA. 2018. Utilization of natural antimicrobial and antioxidant of Moringa oleifera leaves extract in manufacture of cream cheese. J Biol Sci 18(2): 92–106. [Google Scholar]
  • Mohammed MI, Hamza ZU. 2008. Physicochemical properties of oil extracts from Sesamum Indicum L. seeds grown in Jigawa state − Nigeria. J Appl Sci Environ Manag 12(2): 99–101. [Google Scholar]
  • Mzimbiri R, Shi AM, Liu H, Wang Q. 2014. A Review: Peanut fatty acids determination using hyper spectroscopy imagine and its significance on food quality and safety. Food Sci Qual Man 28: 90–97. [Google Scholar]
  • Nzikou JM, Matos L, Mbemba F, et al. 2009. Characteristics and composition of Jatropha curcas oils, variety Congo-Brazzaville. Res J Appl Sci, Eng Tech 1(3): 154–159. [Google Scholar]
  • Önemli F. 2012. Impact of climate change on oil fatty acid composition of peanut (Arachis hypogeal L.) in three market classes. Chil J Agric Res 72: 383–488. [Google Scholar]
  • Pasupuleti J, Nigam SN, Pandey MK, Nagesh P, Varshney RK. 2013. Groundnut improvement: Use of genetic and genomic tools. Front Plant Sci 4: 23. [PubMed] [Google Scholar]
  • Sebei K, Gnouma A, Herchi W, Sakouhi F, Boukhchina S. 2013. Lipids, proteins, phenolic composition, antioxidant and antibacterial activities of seeds of peanuts (Arachis hypogaea L.) cultivated in Tunisia. Biol Res 46(3): 257–263. [CrossRef] [PubMed] [Google Scholar]
  • Shad MA, Pervez H, Zafar ZI, Nawaz H, Khan H (2012) Physicochemical properties, fatty acid profile and antioxidant activity of peanut oil. Pak J Bot 44(1): 435–440. [Google Scholar]
  • Shasidhar Y, Vishwakarma MK, Pandey MK, et al. 2017. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci 8: 794. [CrossRef] [PubMed] [Google Scholar]
  • Sibt-e-Abbas M, Butt MS, Sultan MT, Sharif MK, Ahmad AN, Batool R. 2015. Nutritional and functional properties of protein isolates extracted from defatted peanut flour. Int Food Res J 22(4): 1533. [Google Scholar]
  • Steel RGD, Torrie JH, Dickey DA. 1997. Principles and procedures of statistics: A biometrical approach, 3rd Edition. New York, USA: McGraw Hill. [Google Scholar]
  • Variath MT, Janila P. 2017. Economic and academic importance of peanut. In: The peanut genome. Cham: Springer, pp. 7–26. [CrossRef] [Google Scholar]
  • Win MM, Abdul-Hamid A, Baharin BS, Anwar F, Sabu MC, Pak-Dek MS. 2011. Phenolic compounds and antioxidant activity of peanut’s skin, hull, raw kernel and roasted kernel flour. Pak J Bot 43(3): 1635–1642. [Google Scholar]
  • Wood JD, Enser M, Fisher AV, et al. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci 78(4): 343–358. [Google Scholar]
  • Zaher F, Gad MS, Aly SM, Hamed SF, Abo-Elwafa GA, Zahran HA. 2017. Catalytic cracking of vegetable oils for producing biofuel. Egy J Chem 60(2): 291–300. [CrossRef] [Google Scholar]
  • Zahran HA, Soliman HM. 2018. UPLC-Q-TOF/MS screening of bio-active compounds extracted from olive mill solid wastes and their effect on oxidative stability of purslane seed oil. Curr Sci Int 7(2): 307–319. [Google Scholar]
  • Zhao X, Chen J, Du F. 2012. Potential use of peanut by-products in food processing: A Review. J Food Sci Tech 49(5): 521–529. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.