Open Access
Volume 25, Number 3, May-June 2018
Article Number D305
Number of page(s) 7
Section Perinatal consumption of dietary lipids: consequences for child health / Alimentation lipidique en période périnatale : conséquences pour la santé de l’enfant
Published online 08 June 2018
  • Ailhaud G, Guesnet P. 2004. Fatty acid composition of fats is an early determinant of childhood obesity: a short review and an opinion. Obes Rev 5: 21–26. [CrossRef] [PubMed] [Google Scholar]
  • Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P. 2006. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res 45: 203–236. [CrossRef] [PubMed] [Google Scholar]
  • Ailhaud G, Guesnet P, Cunnane SC. 2008. An emerging risk factor for obesity: does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development? Br J Nutr 100: 461–470. [CrossRef] [PubMed] [Google Scholar]
  • Alessandri JM, Guesnet P, Vancassel S, et al. 2004. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 44: 509–538. [CrossRef] [Google Scholar]
  • Barness LA. 1987. History of infant feeding practices. Am J Clin Nutr 46(1 Suppl): 168–170. [CrossRef] [PubMed] [Google Scholar]
  • Bendixen H, Flint A, Raben A, et al. 2002. Effect of 3 modified fats and a conventional fat on appetite, energy intake, energy expenditure, and substrate oxidation in healthy men. Am J Clin Nutr 75: 47–56. [PubMed] [Google Scholar]
  • Bernard JY, Armand M, Peyre H, et al. 2017. Breastfeeding, polyunsaturated fatty acid levels in colostrum and child intelligence quotient at age 5–6 years. J Pediatr 183: 43–50.e3. DOI: 10.1016/j.jpeds.2016.12.039. Epub 2017 Jan 9. EDEN Mother-Child Cohort Study Group (Étude des Déterminants pré- et postnatals précoces du développement et de la santé de l’Enfant). [Google Scholar]
  • Boué-Vaysse C, Billeaud C, Guesnet P, et al. 2009. Teneurs en acides gras polyinsaturés essentiels du lait maternel en France : évolution du contenu en acides linoléique et alphalinolénique au cours des 10 dernières années. OCL 16: 4–7. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bourlieu C, Deglaire A, et al. 2017. Towards infant formula biomimetic of human milk structure and digestive behaviour. OCL 24(2): D206. [Google Scholar]
  • Bourre JM, Francois M, Youyou A, et al. 1989. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 119: 1880–1892. [CrossRef] [PubMed] [Google Scholar]
  • Bourre JM, Piciotti M, Dumont O, Pascal G, Durand G. 1990. Dietary linoleic acid and polyunsaturated fatty acids in rat brain and other organs. Minimal requirements of linoleic acid. Lipids 25: 465–472. [CrossRef] [PubMed] [Google Scholar]
  • Campoy C, Escolano-Margarit MV, Anjos T, et al. 2012. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr 107(Suppl 2): S85–106. [CrossRef] [Google Scholar]
  • Childs CE, Hoile SP, Fear AL, Calder PC. 2011. Different dietary omega-3 sources during pregnancy and DHA in the developing rat brain. OCL 18 (5): 259–262. [CrossRef] [EDP Sciences] [Google Scholar]
  • Choque B, Catheline D, Delplanque B, Guesnet P, Legrand P. 2015. Dietary linoleic acid requirements in the presence of α-linolenic acid are lower than the historical 2% of energy intake value, study in rats. Br J Nutr 113(7): 1056–1068. DOI: 10.1017/S0007114515000094. [CrossRef] [PubMed] [Google Scholar]
  • Clark KJ, Makrides M, Neumann MA, Gibson RA. 1992. Determination of the optimal ratio of linoleic acid to alpha-linolenic acid in infant formulas. J Pediatr: 120: S151–158. [CrossRef] [PubMed] [Google Scholar]
  • Cleland LG, Gibson RA, Pedler J, James MJ. 2005. Paradoxical effect of n-3-containing vegetable oils on long-chain n-3 fatty acids in rat heart. Lipids 40: 995–998. [CrossRef] [PubMed] [Google Scholar]
  • Courage ML, McCloy UR, Herzberg GR, et al. 1998. Visual acuity development and fatty acid composition of erythrocytes in full-term infants fed breast milk, commercial formula, or evaporated milk. J Dev Behav Pediatr 19 (1): 9–17. [CrossRef] [PubMed] [Google Scholar]
  • Cuthbertson WF. 1976. Essential fatty acid requirements in infancy. Am J Clin Nutr 29 (5): 559–568. [CrossRef] [PubMed] [Google Scholar]
  • Delplanque B, Du Q, Le Ruyet P, et al. 2011. Brain docosahexaenoic acid (DHA) levels of young rats are related to alpha-linolenic acid (ALA) levels and fat matrix of the diet: impact of dairy fat. OCL 18 (6): 293–296. [CrossRef] [EDP Sciences] [Google Scholar]
  • Delplanque B, Du Q, Agnani G, Le Ruyet P, Martin JC. 2013. A dairy fat matrix providing alpha-linolenic acid (ALA) is better than a vegetable fat mixture to increase brain DHA accretion in young rats. Prostaglandins Leukot Essent Fatty Acids 88 (1): 115–120. [CrossRef] [PubMed] [Google Scholar]
  • Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B. 2015. Lipid quality in infant nutrition: Current knowledge and future opportunities. J Pediatr Gastroenterol Nutr 61 (1): 8–17. [PubMed] [Google Scholar]
  • Domenichiello AF, Kitson AP, Bazinet RP. 2015. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain ? Prog Lipid Res 59: 54–66. DOI: 10.1016/j.plipres.2015.04.002. Epub 2015 Apr 25. [CrossRef] [Google Scholar]
  • Du Q, Martin JC, Agnani G, et al. 2012. Dairy fat blends high in alpha-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats. J Nutr Biochem 23 (12): 1573–1582. [CrossRef] [PubMed] [Google Scholar]
  • EFSA. 2014. Panel N Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J 12(7). [Google Scholar]
  • Gianni ML, Roggero P, Baudry C, et al. 2018. An infant formula containing dairy lipids increased red blood cell membrane Omega 3 fatty acids in 4 month-old healthy newborns: a randomized controlled trial. BMC Pediatr 13–18(1): 53. DOI: 0.1186/s12887-018-1047–5. [Google Scholar]
  • Gibson RA, Neumann MA, Lien EL, Boyd KA, Tu WC. 2013. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 88: 139–146. [CrossRef] [PubMed] [Google Scholar]
  • Guesnet P, Lallemand SM, Alessandri JM, Jouin M, Cunnane SC. 2011. α-Linolenate reduces the dietary requirement for linoleate in the growing rat. Prostaglandins Leukot Essent Fatty Acids 85: 353–360. [Google Scholar]
  • Guesnet P, Marmonier C, Boyer C, Delplanque B. 2018. Impact of maternal dietary lipids on human health. OCL Published online: 20 April 2018. Available from [Google Scholar]
  • Holman HT, Johnson SB, Hatch TF. 1982. A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr 35: 617–623. [CrossRef] [PubMed] [Google Scholar]
  • Institute of Medicine (U.S.). 2004. Defining Safety for Infants. In: Infant formula: evaluating the safety of new ingredients. The National Academic Press, pp. 22–42, Retrieved on November 15, 2009. [Google Scholar]
  • Jamieson EC, Farquharson J, Logan RW, et al. 1999. Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids 34(10): 1065–1071. [CrossRef] [PubMed] [Google Scholar]
  • Jensen CL, Voigt RG, Llorente AM, et al. 2010. Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants. J Pediatr 157 (6): 900–905. [CrossRef] [PubMed] [Google Scholar]
  • Jones PJ. 1994. Dietary linoleic, alpha-linolenic and oleic acids are oxidized at similar rates in rats fed a diet containing these acids in equal proportions. Lipids 29: 491–495. [CrossRef] [PubMed] [Google Scholar]
  • Keys A (ed). 1982. Seven countries: A multivariate analysis of death and coronary heart disease. Cambridge, Mass.: Harvard University Press. [Google Scholar]
  • Le Huërou-Luron I, Lemaire M, Blat S. 2018. Health benefits of dairy lipids and MFGM in infant formula. OCL. Available from [Google Scholar]
  • Lehner F, Demmelmair H, Roschinger W, et al. 2006. Metabolic effects of intravenous LCT or MCT/LCT lipid emulsions in preterm infants. J Lipid Res 47 (2): 404–411. [CrossRef] [PubMed] [Google Scholar]
  • Makrides M, Gibson RA, McPhee AJ, et al. 2009. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomized controlled trial. JAMA 301 (2): 175–182. [CrossRef] [PubMed] [Google Scholar]
  • Morise A, Combe N, Boué C, et al. 2004. Dose effect of alpha-linolenic acid on PUFA bioconversion, bioavailability, and storage in the hamster. Lipids 39: 325–334. [CrossRef] [PubMed] [Google Scholar]
  • Oosting A, Verkade HJ, Kegler D, van de Heijning BJ, van der Beek EM. 2015. Rapid and selective manipulation of milk fatty acid composition in mice through the maternal diet during lactation. J Nutr Sci 4: e19. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen L, Lauritzen L, Brasholt M, Buhl T, Bisgaard H. 2012. Polyunsaturated fatty acid content of mother’s milk is associated with childhood body composition. Pediatr Res 72: 631–636. [CrossRef] [PubMed] [Google Scholar]
  • Ramsden CE, Zamora D, Leelarthaepin B, et al. 2013. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 346: e8707. DOI: 10.1136/bmj.e8707. [Google Scholar]
  • Rapoport SI, Rao JS, Igarashi M. 2007 Regulation by diet and liver of brain metabolism of nutritionally essential polyunsaturated fatty acids. OCL 216. Available from [CrossRef] [EDP Sciences] [Google Scholar]
  • Rioux V, Pedrono F, Legrand P. 2011. Regulation of mammalian desaturases by myristic acid: N-terminal myristoylation and other modulations. Biochim Biophys Acta 1811 (1): 1–8. [CrossRef] [PubMed] [Google Scholar]
  • Rolland-Cachera MF. 2018. Apports lipidiques pendant la période périnatale ; relation avec l’obésité de l’enfant et du futur adulte. OCL Published online: 21 March 2018. Available from [Google Scholar]
  • Rolland V, Roseau S, Fromentin G, Nicolaidis S, Tomé D, Even PC. 2002. Body weight, body composition, and energy metabolism in lean and obese Zucker rats fed soybean oil or butter. Am J Clin Nutr 75: 21–30. [CrossRef] [PubMed] [Google Scholar]
  • Sanders TA, Naismith DJ. 1979. A comparison of the influence of breast-feeding and bottle-feeding on the fatty acid composition of the erythrocytes. Br J Nutr 41: 619–623. [CrossRef] [PubMed] [Google Scholar]
  • Stevens EE, Patrick TE, Pickler R. 2009. A history of infant feeding. J Perinat Educ 18 (2): 32–39. [CrossRef] [Google Scholar]
  • Tu WC, Cook-Johnson RJ, James MJ, Muhlhausler BS, Gibson RA. 2010. Omega-3 long chain fatty acid synthesis is regulated more by substrate levels than gene expression. Prostaglandins Leukot Essent Fatty Acids 83: 61–68. [CrossRef] [PubMed] [Google Scholar]
  • Uauy RD, Birch DG, Birch EE, Tyson JE, Hoffman DR. 1990. Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr Res 28: 485–492. [CrossRef] [PubMed] [Google Scholar]
  • Vidakovic AJ, Gishti O, Voortman T, et al. 2016. Maternal plasma PUFA concentrations during pregnancy and childhood adiposity: the Generation R Study. Am J Clin Nutr 103: 1017–1025. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.