Open Access
Volume 25, Number 3, May-June 2018
Article Number D306
Number of page(s) 7
Section Perinatal consumption of dietary lipids: consequences for child health / Alimentation lipidique en période périnatale : conséquences pour la santé de l’enfant
Published online 27 March 2018
  • Baars A, Oosting A, Engels E, et al. 2016. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. Br J Nutr 115: 1930–1937. [CrossRef] [PubMed] [Google Scholar]
  • Ballard O, Morrow AL. 2013. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 60: 49–74. [CrossRef] [PubMed] [Google Scholar]
  • Bhinder G, Allaire JM, Garcia C, et al. 2017. Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Sci Rep 7: 45274. [CrossRef] [PubMed] [Google Scholar]
  • Billeaud C, Puccio G, Saliba E, et al. 2014. Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: a randomized controlled multicenter non-inferiority trial in healthy term infants. Clin Med Insight Pediatr 8: 51–60. [CrossRef] [Google Scholar]
  • Bourlieu C, Bouzerzour K, Ferret-Bernard S, et al. 2015. Infant formula interface and fat source impact on neonatal digestion and gut microbiota. European J Lipid Sci Tech 117: 1500–1512. [CrossRef] [Google Scholar]
  • Bourlieu C, Deglaire A, De Oliveira SC, et al. 2017. Towards infant formula biomimetic of human milk structure and digestive behaviour. OCL 24: D206. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. 2007. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 85: 1457–1464. [CrossRef] [PubMed] [Google Scholar]
  • Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B. 2015. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr 61: 8–17. [PubMed] [Google Scholar]
  • Dewettinck K, Rombaut R, Thienpont N, Le TT, Messens K, Van Camp J. 2008. Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J 18: 436–457. [CrossRef] [Google Scholar]
  • Dinel AL, Rey C, Baudry C, et al. 2016. Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood. Prostaglandins Leukot Essent Fatty Acids 113: 9–18. [CrossRef] [PubMed] [Google Scholar]
  • Fuller KL, Kuhlenschmidt TB, Kuhlenschmidt MS, Jimenez-Flores R, Donovan SM. 2013. Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. J Dairy Sci 96: 3488–3497. [CrossRef] [PubMed] [Google Scholar]
  • Gallier S, Vocking K, Post JA, et al. 2015. A novel infant milk formula concept: mimicking the human milk fat globule structure. Colloids Surf B Biointerfaces 136: 329–339. [CrossRef] [PubMed] [Google Scholar]
  • Gianni ML, Roggero P, Baudry C, Fressange-Mazda C, Le Ruyet P, Mosca F. 2018. No effect of adding dairy lipids or long chain polyunsaturated fatty acids on formula tolerance and growth in full term infants: a randomized controlled trial. BMC Pediatr 18: 10. [CrossRef] [PubMed] [Google Scholar]
  • Gurnida DA, Rowan AM, Idjradinata P, Muchtadi D, Sekarwana N. 2012. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum Dev 88: 595–601. [CrossRef] [PubMed] [Google Scholar]
  • Hernell O, Timby N, Domellof M, Lonnerdal B. 2016. Clinical benefits of milk fat globule membranes for infants and children. J Pediatr 173: S60–65. [CrossRef] [PubMed] [Google Scholar]
  • Innis SM. 2007. Human milk: maternal dietary lipids and infant development. Proc Nutr Soc 66: 397–404. [CrossRef] [PubMed] [Google Scholar]
  • Innis SM. 2011. Dietary triacylglycerol structure and its role in infant nutrition. Adv Nutr 2: 275–283. [CrossRef] [PubMed] [Google Scholar]
  • Jensen CL. 2006. Effects of n-3 fatty acids during pregnancy and lactation. Am J Clin Nutr 83: 1452S–1457S. [CrossRef] [PubMed] [Google Scholar]
  • Koletzko B, Von Kries R, Closa R, et al. 2009. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 89: 1836–1845. [CrossRef] [PubMed] [Google Scholar]
  • Koletzko B, Agostoni C, Bergmann R, Ritzenthaler K, Shamir R. 2011. Physiological aspects of human milk lipids and implications for infant feeding: a workshop report. Acta Paediatr 100: 1405–1415. [CrossRef] [PubMed] [Google Scholar]
  • Kramer MS, Aboud F, Mironova E, et al. 2008. Breastfeeding and child cognitive development: new evidence from a large randomized trial. Arch Gen Psychiatr 65: 578–584. [CrossRef] [PubMed] [Google Scholar]
  • Lemaire M, Boudry G, Ferret-Bernard S, et al. 2017. Addition of dairy lipids and probiotic Lactobacillus fermentum CECT 5716 in infant formula programs gut microbiota, epithelial permeability, immunity and GLP-1 secretion in adult minipigs. In: Abstracts of the 50th Annual Meeting of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, Prague. [Google Scholar]
  • Le Huërou-Luron I, Blat S, Boudry G. 2010. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 23: 23–36. [CrossRef] [PubMed] [Google Scholar]
  • Le Huërou-Luron I, Bouzerzour K, Ferret-Bernard S, et al. 2018. A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. European J Nutr 57: 463–476. [CrossRef] [Google Scholar]
  • Li Y, Jensen ML, Chatterton DE, et al. 2014. Raw bovine milk improves gut responses to feeding relative to infant formula in preterm piglets. Am J Physiol Gastrointest Liver Physiol 306: G81–90. [CrossRef] [PubMed] [Google Scholar]
  • Lock AL, Bauman DE. 2004. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 39: 1197–1206. [CrossRef] [PubMed] [Google Scholar]
  • Lonnerdal B. 2016. Bioactive proteins in human milk: health, nutrition, and implications for infant formulas. Journal Pediatr 173: S4–9. [CrossRef] [Google Scholar]
  • Lukoyanova O, Borovik T, Bushueva, et al. 2017. The lipid metabolism in infants fed formula supplemented with bovine milk fat and bovine milk fat globule membranes. In: Abstracts of the 50th Annual Meeting of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition; Prague. [Google Scholar]
  • Macierzanka A, Sancho AI, Mills ENC, Rigby NM, Mackie AR. 2009. Emulsification alters simulated gastrointestinal proteolysis of β-casein and β-lactoglobulin. Soft Matter 5: 538–550. [Google Scholar]
  • Malacarne M, Martuzzi F, Summer A, Mariani P. 2002. Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. Int Dairy J 12: 869–877. [Google Scholar]
  • Mudd AT, Alexander LS, Berding K et al., 2016. Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Front Pediatr 4: 4. [Google Scholar]
  • Oosting A, Kegler D, Wopereis HJ et al., 2012. Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood. Pediatr Res 72: 362–369. [Google Scholar]
  • Oosting A, Van Vlies N, Kegler D et al., 2014. Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. Br J Nutr 111: 215–226. [Google Scholar]
  • Park EJ, Thomson AB, Clandinin MT. 2010. Protection of intestinal occludin tight junction protein by dietary gangliosides in lipopolysaccharide-induced acute inflammation. J Pediatr Gastroenterol Nutr 50: 321–328. [Google Scholar]
  • Poppitt SD, Mcgregor RA, Wiessing KR et al., 2014. Bovine complex milk lipid containing gangliosides for prevention of rotavirus infection and diarrhoea in northern Indian infants. J Pediatr Gastroenterol Nutr 59: 167–171. [Google Scholar]
  • Schipper L, Van Dijk G, Broersen LM et al., 2016. A postnatal diet containing phospholipids, processed to yield large, phospholipid-coated lipid droplets, affects specific cognitive behaviors in healthy male mice. J Nutr 146: 1155–1161. [Google Scholar]
  • Shek L, Winokan A, Abrahamse-Berkeveld et al. 2017. An innovative infant milk formula with large, phospholipid-coated lipid droplets supports an adequate growth and is well-tolerated in healthy, term Asian infants. In: Abstracts of the 4th International Conference on Nutrition & Growth; Amsterdam. [Google Scholar]
  • Snow DR, Ward RE, Olsen A, Jimenez-Flores R, Hintze KJ. 2011. Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. J Dairy Sci 94: 2201–2212. [Google Scholar]
  • Sprong RC, Hulstein MF, Lambers TT, Van Der Meer R. 2012. Sweet buttermilk intake reduces colonisation and translocation of Listeria monocytogenes in rats by inhibiting mucosal pathogen adherence. Br J Nutr 108: 2026–2033. [Google Scholar]
  • Tanaka K, Hosozawa M, Kudo N et al., 2013. The pilot study: sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain Dev 35: 45–52. [Google Scholar]
  • Timby N, Domellof E, Hernell O, Lonnerdal B, Domellof M. 2014a. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nutr 99: 860–868. [Google Scholar]
  • Timby N, Lonnerdal B, Hernell O, Domellof M. 2014b. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr Res 76: 394–400. [Google Scholar]
  • Timby N, Hernell O, Vaarala O, Melin M, Lonnerdal B, Domellof M. 2015. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr 60: 384–389. [Google Scholar]
  • Timby N, Domellof M, Holgerson PL et al., 2017a. Oral microbiota in infants fed a formula supplemented with bovine milk fat globule membranes − a randomized controlled trial. PloS one 12: e0169831. [Google Scholar]
  • Timby N, Domellof M, Lonnerdal B, Hernell O. 2017b. supplementation of infant formula with bovine milk fat globule membranes. Adv Nutr 8: 351–355. [Google Scholar]
  • Veereman-Wauters G, Staelens S, Rombaut R et al., 2012. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition 28: 749–752. [Google Scholar]
  • Wang B, Yu B, Karim M et al., 2007. Dietary sialic acid supplementation improves learning and memory in piglets1–3. Am J Clin Nutr 85: 561–569. [Google Scholar]
  • Weber M, Grote V, Closa-Monasterolo R et al., 2014. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr 99: 1041–1051. [Google Scholar]
  • Ya BL, Liu WY, Ge F, Zhang YX, Zhu BL, Bai B. 2013. Dietary cholesterol alters memory and synaptic structural plasticity in young rat brain. Neurol Sci 34: 1355–1365. [Google Scholar]
  • Zavaleta N, Kvistgaard AS, Graverholt G et al., 2011. Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. J Pediatr Gastroenterol Nutr 53: 561–568. [Google Scholar]
  • Zheng H, Jimenez-Flores R, Everett DW. 2013. Bovine milk fat globule membrane proteins are affected by centrifugal washing processes. J Agric Food Chem 61: 8403–8411. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.