Open Access
Issue |
OCL
Volume 19, Number 4, Juillet-Août 2012
|
|
---|---|---|
Page(s) | 200 - 208 | |
Section | Dossier : Absorption intestinale des lipides | |
DOI | https://doi.org/10.1051/ocl.2012.0461 | |
Published online | 15 July 2012 |
- Atshaves BP, Foxworth WB, Frolov A, et al. Cellular differentiation and I-FABP protein expression modulate fatty acid uptake and diffusion. Am J Physiol 1998 ; 274 : C633–644. [PubMed] [Google Scholar]
- Beaslas O, Cueille C, Delers F, Chateau D, Chambaz J, Rousset M, Carrière V. Détection luminale des micelles lipidiques. OCL 2012 ; 19. (Sous presse) doi : 10.1051/ocl.2012.0448 . [Google Scholar]
- Berriot-Varoqueaux N, Dannoura AH, Moreau A, et al. Apolipoprotein B48 glycosylation in abetalipoproteinemia and Anderson’s disease. Gastroenterology 2001 ; 121 : 1101–1108. [CrossRef] [PubMed] [Google Scholar]
- Bray GA, Paeratakul S, Popkin BM. Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav 2004 ; 83 : 549–555. [CrossRef] [PubMed] [Google Scholar]
- Cartwright IJ, Higgins JA. Increased dietary triacylglycerol markedly enhances the ability of isolated rabbit enterocytes to secrete chylomicrons: an effect related to dietary fatty acid composition. J Lipid Res 1999 ; 40 : 1858–1866. [PubMed] [Google Scholar]
- Chow SL, Hollander D. Linoleic acid absorption in the unanesthetized rat: mechanism of transport and influence of luminal factors on absorption. Lipids 1979 ; 14 : 378–385. [CrossRef] [PubMed] [Google Scholar]
- Corsico B, Cistola DP, Frieden C, Storch J. The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proc Natl Acad Sci U S A 1998 ; 95 : 12174–12178. [CrossRef] [PubMed] [Google Scholar]
- de Wit NJ, Boekschoten MV, Bachmair EM, et al. Dose-dependent effects of dietary fat on development of obesity in relation to intestinal differential gene expression in C57BL/6J mice. PLoS One 2011 ; 6 : e19145. [CrossRef] [PubMed] [Google Scholar]
- Defoort C, Vincent-Baudry S, Lairon D. Effects of 3-month Mediterranean-type diet on postprandial TAG and apolipoprotein B48 in the Medi-RIVAGE cohort. Public Health Nutr 2011 ; 14 : 2302–2308. [CrossRef] [PubMed] [Google Scholar]
- Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda) 2006 ; 21 : 259–268. [CrossRef] [PubMed] [Google Scholar]
- Drover VA, Ajmal M, Nassir F, et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J Clin Invest 2005 ; 115 : 1290–1297. [PubMed] [Google Scholar]
- Drover VA, Nguyen DV, Bastie CC, et al. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. J Biol Chem 2008 ; 283 : 13108–13115. [CrossRef] [PubMed] [Google Scholar]
- El-Yassimi A, Hichami A, Besnard P, Khan NA. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem 2008 ; 283 : 12949–12959. [CrossRef] [PubMed] [Google Scholar]
- Federico LM, Naples M, Taylor D, Adeli K. Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine. Diabetes 2006 ; 55 : 1316–1326. [CrossRef] [PubMed] [Google Scholar]
- Frochot V, Alqub M, Cattin AL, et al. The transcription factor HNF-4alpha: a key factor of the intestinal uptake of fatty acids in mouse. Am J Physiol Gastrointest Liver Physiol 2012b ; 302 : G1253–G1263. [CrossRef] [Google Scholar]
- Garcia-Martinez C, Marotta M, Moore-Carrasco R, et al. Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. Am J Physiol Cell Physiol 2005 ; 288 : C1264–1272. [CrossRef] [PubMed] [Google Scholar]
- Gertow K, Bellanda M, Eriksson P, et al. Genetic and structural evaluation of fatty acid transport protein-4 in relation to markers of the insulin resistance syndrome. J Clin Endocrinol Metab 2004 ; 89 : 392–399. [CrossRef] [PubMed] [Google Scholar]
- Gimeno RE, Hirsch DJ, Punreddy S, et al. Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. J Biol Chem 2003 ; 278 : 49512–49516. [CrossRef] [PubMed] [Google Scholar]
- Hall AM, Wiczer BM, Herrmann T, Stremmel W. Bernlohr D.A. Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 2005 ; 280 : 11948–11954. [CrossRef] [PubMed] [Google Scholar]
- Holehouse EL, Liu ML. Aponte G.W. Oleic acid distribution in small intestinal epithelial cells expressing intestinal-fatty acid binding protein. Biochim Biophys Acta 1998 ; 1390 : 52–64. [CrossRef] [PubMed] [Google Scholar]
- Ibrahimi A, Sfeir Z, Magharaie H, Amri EZ, Grimaldi P. Abumrad N.A. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc Natl Acad Sci U S A 1996 ; 93 : 2646–2651. [CrossRef] [PubMed] [Google Scholar]
- Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 2009 ; 296 : E1183–1194. [CrossRef] [PubMed] [Google Scholar]
- Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999 ; 19 : 472–484. [CrossRef] [PubMed] [Google Scholar]
- Karpe F, Olivecrona T, Hamsten A, Hultin M. Chylomicron/chylomicron remnant turnover in humans: evidence for margination of chylomicrons and poor conversion of larger to smaller chylomicron remnants. J Lipid Res 1997 ; 38 : 949–961. [PubMed] [Google Scholar]
- Kondo H, Minegishi Y, Komine YV, et al. Differential regulation of intestinal lipid metabolism-related genes in obesity-resistant A/J vs obesity-prone C57BL/6J mice. Am J Physiol Endocrinol Metab 2006 ; 291 : E1092–1099. [CrossRef] [PubMed] [Google Scholar]
- Laugerette F, Passilly-Degrace P, Patris B, et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 2005 ; 115 : 3177–3184. [CrossRef] [PubMed] [Google Scholar]
- Lin MC, Arbeeny C, Bergquist K, Kienzle B, Gordon DA, Wetterau JR. Cloning and regulation of hamster microsomal triglyceride transfer protein. The regulation is independent from that of other hepatic and intestinal proteins which participate in the transport of fatty acids and triglycerides. J Biol Chem 1994 ; 269 : 29138–29145. [PubMed] [Google Scholar]
- Lobo MV, Huerta L, Ruiz-Velasco N, et al. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: towards the identification of receptors mediating the intestinal absorption of dietary lipids. J Histochem Cytochem 2001 ; 49 : 1253–1260. [CrossRef] [PubMed] [Google Scholar]
- Mansbach CM, 2nd. Gorelick F.. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol 2007 ; 293 : G645–650. [CrossRef] [PubMed] [Google Scholar]
- Mariadason JM, Nicholas C, L’Italien KE, et al. Gene expression profiling of intestinal epithelial cell maturation along the crypt-villus axis. Gastroenterology 2005 ; 128 : 1081–1088. [CrossRef] [PubMed] [Google Scholar]
- Martin C, Chevrot M, Poirier H, Passilly-Degrace P, Niot I, Besnard P. CD36 as a lipid sensor. Physiol Behav 2011 ; 105 : 36–42. [Google Scholar]
- Martins IJ, Mortimer BC, Miller J, Redgrave TG. Effects of particle size and number on the plasma clearance of chylomicrons and remnants. J Lipid Res 1996 ; 37 : 2696–2705. [CrossRef] [PubMed] [Google Scholar]
- Masuda D, Hirano K, Oku H, et al. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J Lipid Res 2009 ; 50 : 999–1011. [CrossRef] [PubMed] [Google Scholar]
- Milger K, Herrmann T, Becker C, et al. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci 2006 ; 119 : 4678–4688. [CrossRef] [PubMed] [Google Scholar]
- Mora S, Rifai N, Buring JE, Ridker PM. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation 2008 ; 118 : 993–1001. [CrossRef] [PubMed] [Google Scholar]
- Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem 2007 ; 282 : 19493–19501. [CrossRef] [PubMed] [Google Scholar]
- Nauli AM, Nassir F, Zheng S, et al. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology 2006 ; 131 : 1197–1207. [CrossRef] [PubMed] [Google Scholar]
- Neeli I, Siddiqi SA, Siddiqi S, et al. Liver fatty acid-binding protein initiates budding of pre-chylomicron transport vesicles from intestinal endoplasmic reticulum. J Biol Chem 2007 ; 282 : 17974–17984. [CrossRef] [PubMed] [Google Scholar]
- Newberry EP, Xie Y, Kennedy S, et al. Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene. J Biol Chem 2003 ; 278 : 51664–51672. [CrossRef] [PubMed] [Google Scholar]
- Newberry EP, Xie Y, Kennedy SM, Luo J, Davidson NO. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology 2006 ; 44 : 1191–1205. [CrossRef] [PubMed] [Google Scholar]
- Niot I, Poirier H, Tran TT, Besnard P. Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog Lipid Res 2009 ; 48 : 101–115. [CrossRef] [PubMed] [Google Scholar]
- Olivecrona G, Beisiegel U. Lipid binding of apolipoprotein CII is required for stimulation of lipoprotein lipase activity against apolipoprotein CII-deficient chylomicrons. Arterioscler Thromb Vasc Biol 1997 ; 17 : 1545–1549. [CrossRef] [PubMed] [Google Scholar]
- Petit V, Arnould L, Martin P, et al. Chronic high-fat diet affects intestinal fat absorption and postprandial triglyceride levels in the mouse. J Lipid Res 2007 ; 48 : 278–287. [CrossRef] [PubMed] [Google Scholar]
- Poirier H, Degrace P, Niot I, Bernard A, Besnard P. Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur J Biochem 1996 ; 238 : 368–373. [CrossRef] [PubMed] [Google Scholar]
- Prows DR, Schroeder F. Metallothionein-IIA promoter induction alters rat intestinal fatty acid binding protein expression, fatty acid uptake, and lipid metabolism in transfected L-cells. Arch Biochem Biophys 1997 ; 340 : 135–143. [CrossRef] [PubMed] [Google Scholar]
- Ross AC. Overview of retinoid metabolism. J Nutr 1993 ; 123 : 346–350. [PubMed] [Google Scholar]
- Shiau YF, Fernandez P, Jackson MJ, McMonagle S. Mechanisms maintaining a low-pH microclimate in the intestine. Am J Physiol 1985 ; 248 : G608–617. [PubMed] [Google Scholar]
- Shim J, Moulson CL, Newberry EP, et al. Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J Lipid Res 2009 ; 50 : 491–500. [CrossRef] [PubMed] [Google Scholar]
- Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2009 ; 2 : re3. [CrossRef] [PubMed] [Google Scholar]
- Stahl A, Gimeno RE, Tartaglia LA, Lodish H.F. Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 2001 ; 12 : 266–273. [CrossRef] [PubMed] [Google Scholar]
- Stahl A, Hirsch DJ, Gimeno RE, et al. Identification of the major intestinal fatty acid transport protein. Mol Cell 1999 ; 4 : 299–308. [CrossRef] [PubMed] [Google Scholar]
- Steinert RE, Beglinger C. Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides. Physiol Behav 2011 ; 105 : 62–70. [CrossRef] [PubMed] [Google Scholar]
- Stremmel W. Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest 1988 ; 82 : 2001–2010. [CrossRef] [PubMed] [Google Scholar]
- Stremmel W, Lotz G, Strohmeyer G, Berk PD. Identification, isolation, and partial characterization of a fatty acid binding protein from rat jejunal microvillous membranes. J Clin Invest 1985a ; 75 : 1068–1076. [CrossRef] [Google Scholar]
- Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD. Isolation and partial characterization of a fatty acid-binding protein in rat liver plasma membranes. Proceedings of the National Academy of Sciences USA 1985b ; 82 : 4–8. [CrossRef] [Google Scholar]
- Stump DD, Zhou SL, Berk PD. Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am J Physiol 1993 ; 265 : G894–902. [PubMed] [Google Scholar]
- Su X, Abumrad NA. Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 2009 ; 20 : 72–77. [CrossRef] [PubMed] [Google Scholar]
- Sukhotnik I, Gork AS, Chen M, Drongowski RA, Coran AG, Harmon CM. Effect of low fat diet on lipid absorption and fatty-acid transport following bowel resection. Pediatr Surg Int 2001 ; 17 : 259–264. [CrossRef] [PubMed] [Google Scholar]
- Swift LL, Jovanovska A, Kakkad B, Ong DE. Microsomal triglyceride transfer protein expression in mouse intestine. Histochem Cell Biol 2005 ; 123 : 475–482. [CrossRef] [PubMed] [Google Scholar]
- Tomkin GH, Owens D. The chylomicron: relationship to atherosclerosis. Int J Vasc Med 2012 ; 2012 : 784536. [CrossRef] [PubMed] [Google Scholar]
- Tran TT, Poirier H, Clement L, et al. Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J Biol Chem 2011 ; 286 : 25201–25210. [CrossRef] [PubMed] [Google Scholar]
- Tran TTT, Poirier H, Clement L, et al. CD36 Displays Features of a Lipid-Sensor Involved in Chylomicron Processing in the Rodent Small Intestine. Atheroscler Suppl 2010 ; 11 : 82–83. [CrossRef] [Google Scholar]
- Tsai J, Qiu W, Kohen-Avramoglu R, Adeli K. MEK-ERK inhibition corrects the defect in VLDL assembly in HepG2 cells: potential role of ERK in VLDL-ApoB100 particle assembly. Arterioscler Thromb Vasc Biol 2007 ; 27 : 211–218. [CrossRef] [PubMed] [Google Scholar]
- Tso P, Liu M. Apolipoprotein A-IV, food intake, and obesity. Physiol Behav 2004 ; 83 : 631–643. [CrossRef] [PubMed] [Google Scholar]
- Uchida A, Whitsitt MC, Eustaquio T, et al. Reduced triglyceride secretion in response to an acute dietary fat challenge in obese compared to lean mice. Front Physiol 2012 ; 3 : 26. [CrossRef] [PubMed] [Google Scholar]
- Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ. The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 2000 ; 14 : 2040–2046. [CrossRef] [PubMed] [Google Scholar]
- Weinberg RB, Gallagher JW, Fabritius MA, Shelness GS. ApoA-IV modulates the secretory trafficking of apoB and the size of triglyceride-rich lipoproteins. J Lipid Res 2012 ; 53 : 736–743. [CrossRef] [PubMed] [Google Scholar]
- Xiang SQ, Cianflone K, Kalant D, Sniderman AD. Differential binding of triglyceride-rich lipoproteins to lipoprotein lipase. J Lipid Res 1999 ; 40 : 1655–1663. [PubMed] [Google Scholar]
- Xie Y, Luo J, Kennedy S, Davidson NO. Conditional intestinal lipotoxicity in Apobec-1-/- Mttp-IKO mice: a survival advantage for mammalian intestinal apolipoprotein B mRNA editing. J Biol Chem 2007 ; 282 : 33043–33051. [CrossRef] [PubMed] [Google Scholar]
- Xie Y, Newberry EP, Young SG, et al. Compensatory increase in hepatic lipogenesis in mice with conditional intestine-specific Mttp deficiency. J Biol Chem 2006 ; 281 : 4075–4086. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.