Open Access
Issue
OCL
Volume 17, Number 3, Mai-Juin 2010
Dossier : Tournesol : champs de recherche
Page(s) 171 - 184
Section Agronomie – Environnement
DOI https://doi.org/10.1051/ocl.2010.0314
Published online 15 May 2010
  • Alpaslan M, Gunduz H. The effects of growing conditions on oil content, fatty acid composition and tocopherol content of some sunflower varieties produced in Turkey. Nahrung-Food 2000 ; 44 : 434–437. [CrossRef] [Google Scholar]
  • Amar S, Ecke W, Becker HC, Mollers C. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor Appl Genet 2008 ; 116 : 1051–1061. [CrossRef] [PubMed] [Google Scholar]
  • Amaral JS, Casal S, Pereira JA, Seabra RM, Oliveira B. Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (L.) cultivars grown in Portugal. J Agric Food Chem 2003 ; 51 : 7698–7702. [CrossRef] [PubMed] [Google Scholar]
  • Ayerdi-Gotor A. Étude des variations des teneurs et de la variabilité des compositions en tocophérols et en phytostérols dans les akènes et l’huile de tournesol (Helianthus annuus L.). In: Institut National Polytechnique de Toulouse-Science des Agroressources, Université de Toulouse, France, 2008. [Google Scholar]
  • Ayerdi-Gotor A, Berger M, Labalette F, Centis S, Daydé J, Calmon A. Variabilité des teneurs et compositions des composés mineurs dans l’huile de tournesol au cours du développement du capitule. Partie I-tocophérols. OCL 2006 ; 13 : 206–212. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ayerdi-Gotor A, Berger M, Labalette F, Centis S, Daydé J, Calmon A. Estimation of breeding potential for tocopherols and phytosterols in sunflower. In: 17th International Sunflower Conference, Cordoba, Spain: Secretaria General Technica. Servicio de Publicationes y Divulgationes. Junta de Andalucia 2008a ; 2 : 555–559. [Google Scholar]
  • Ayerdi-Gotor A, Berger M, Labalette F, et al. Variabilité des teneurs et compositions des composés mineurs dans l’huile de tournesol au cours du développement du capitule. OCL 2008b ; 15 : 400–406. [EDP Sciences] [Google Scholar]
  • Ayerdi-Gotor A, Moreau P, Gaillard A, Calmon A. Caractérisation par infrarouge des teneurs en acides gras de la graine entière décortiquée de tournesol. In: 17th International Sunflower Conference, Cordoba, Spain: Secretaria General Technica. Servicio de Publicationes y Divulgationes. Junta de Andalucia 2008c ; 2 : 757–761. [Google Scholar]
  • Baeten V, Dardenne P, Aparicio R. Interpretation of fourier transform Raman spectra of the unsaponifiable matter in a selection of edible oils. J Agric Food Chem 2001 ; 49 : 5098–5107. [CrossRef] [PubMed] [Google Scholar]
  • Ballesteros E, Gallego M, Valcarcel M. Simultaneous determination of sterols in edible oils by use of a continuous separation module coupled to a gas-chromatograph. Anal Chim Act 1995 ; 308 : 253–260. [CrossRef] [Google Scholar]
  • Banas A, Carlsson AS, Huang B, et al. Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid: sterol acyltransferase) different from the yeast and mammalian acyl-CoA: sterol acyltransferases. J Biol Chem 2005 ; 280 : 34626–34634. [CrossRef] [PubMed] [Google Scholar]
  • Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production. Lipid Res 2010 ; 49 : 235–249. [CrossRef] [PubMed] [Google Scholar]
  • Bergman CJ, Xu Z. Genotype and environment effects on tocopherol, tocotrienol, and gamma-oryzanol contents of Southern US rice. Cereal Chem 2003 ; 80 : 446–449. [CrossRef] [Google Scholar]
  • Blouin JM, Chaves VE, Bortoli S, Forest C. Effet des acides gras sur l’inflammation et le cancer. OCL 2006 ; 13 : 331–336. [EDP Sciences] [Google Scholar]
  • Bouic PJ, Lamprecht JH. Plant sterols and sterolins: a review of their immune-modulating properties. Altern Med Rev 1999 ; 4 : 170–177. [PubMed] [Google Scholar]
  • Boutte Y, Grebe M. Cellular processes relying on sterol function in plants. Curr Op Plant Biol 2009 ; 12 : 705–713. [CrossRef] [Google Scholar]
  • Bradford PG, Awad AB. Phytosterols as anticancer compounds. Mol Nutr Food Res 2007 ; 51 : 161–170. [CrossRef] [PubMed] [Google Scholar]
  • Bramley PMI, Elmadfa I, Kafatos A, et al. Vitamin E. J Sci Food Agric 2000 ; 80 : 913–938. [CrossRef] [Google Scholar]
  • Brevedan MIV, Carelli AA, Crapiste GH. Changes in composition and quality of sunflower oils during extraction and degumming. Grasas Y Aceite 2000 ; 51 : 417–423. [Google Scholar]
  • Britz SJ, Kremer DF. Warm temperatures or drought during seed maturation increase free alpha-tocopherol in seeds of soybean (Glycine max L. Merr.). J Agric Food Chem 2002 ; 50 : 6058–6063. [CrossRef] [PubMed] [Google Scholar]
  • Brufau GM, Canela MA, Rafecas M. Phytosterols: physiologic and metabolic aspects related to cholesterol-lowering properties. Nutr Res 2008 ; 28 : 217–225. [CrossRef] [PubMed] [Google Scholar]
  • Calmon A, Ayerdi-Gotor A, Berger M, et al. Near infrared spectroscopy (NIRS) for improvement in sunflower breeding for fatty acids and minor components. In Word congress on oils and fats & 28th ISF Congress. September 27-30, 2009. Sydney, Australia, 2009. [Google Scholar]
  • Cantisan S, Martinez-Force E, Alvarez-Ortega R, Garces R. Lipid characterization in vegetative tissues of high saturated fatty acid sunflower mutants. J Agric Food Chem 1999 ; 47 : 78–82. [CrossRef] [PubMed] [Google Scholar]
  • Chenevert R, Courchesne G. Synthesis of (S)-alpha-tocotrienol via an enzymatic desymmetrization of an achiral chroman derivative. Tetrahedr Let 2002 ; 43 : 7971–7973. [CrossRef] [Google Scholar]
  • Clouse SD. Plant development: a role for sterols in embryogenesis. Curr Biol 2000 ; 10 : R601–R604. [CrossRef] [PubMed] [Google Scholar]
  • Collakova E, DellaPenna D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 2003 ; 131 : 632–642. [CrossRef] [PubMed] [Google Scholar]
  • Colombo ML. An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules 2010 ; 15 : 2103–2113. [CrossRef] [PubMed] [Google Scholar]
  • Crews C, Hough P, Godward J, et al. Study of the main constituents of some authentic hazelnut oils. J Agric Food Chem 2005a ; 53 : 4843–4852. [CrossRef] [Google Scholar]
  • Crews C, Hough P, Godward J, et al. Study of the main constituents of some authentic walnut oils. J Agric Food Chem 2005b ; 53 : 4853–4860. [CrossRef] [Google Scholar]
  • Dachtler MF, van de Put HM, von Stijn F, Beindorff CM, Fritsche J. On-line LC-NMR-MS characterization of sesame oil extracts and assessment of their antioxidant activity. Eur J Lipid Sci Technol 2003 ; 105 : 488–496. [CrossRef] [Google Scholar]
  • De Greyt WF, Petrauskaite V, Kellens MJ, Huyghebaert AD. Analysis of tocopherols by gas-liquid and high-performance liquid chromatography: a comparative study. Fett-Lipid 1998 ; 100 : 503–507. [CrossRef] [Google Scholar]
  • DellaPenna D, Pogson BJ. Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 2006 ; 57 : 711–738. [CrossRef] [PubMed] [Google Scholar]
  • Demonty I, Ras RT, van der Kniap HCM, et al. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J Nutr 2009 ; 139 : 271–284. [CrossRef] [PubMed] [Google Scholar]
  • Demurin Y, Skoric D, Karlovic D. Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breed 1996 ; 115 : 33–36. [CrossRef] [Google Scholar]
  • Demurin YN, Efimenko SG, Peretyagina TM. Genetic identification of tocopherol mutations in sunflower. Helia 2004 ; 27 : 113–116. [CrossRef] [Google Scholar]
  • Dolde D, Vlahakis C, Hazebroek J. Tocopherols in breeding lines and effects of planting location, fatty acid composition, and temperature during development. J Am Oil Chem Soc 1999 ; 76 : 349–355. [CrossRef] [Google Scholar]
  • Ebrahimi A, Maury P, Berger M, et al. QTL mapping of seed-quality traits in sunflower recombinant inbred lines under different water regimes. Genome 2008 ; 51 : 599–615. [CrossRef] [PubMed] [Google Scholar]
  • Eggeling C, Ringemann C, Medda R, et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 2009 ; 457 : 1159–U121. [CrossRef] [PubMed] [Google Scholar]
  • Falk J, Munne-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 2010 ; 61 : 1549–1566. [CrossRef] [PubMed] [Google Scholar]
  • Fernandes P, Cabral JMS. Phytosterols: applications and recovery methods. Biores Technol 2007 ; 98 : 2335–2350. [CrossRef] [Google Scholar]
  • Fernandez-Moya V, Martinez-Force E, Garces R. Temperature effect on a high stearic acid sunflower mutant. Phytochem 2002 ; 59 : 33–37. [CrossRef] [Google Scholar]
  • Fisk ID, White DA, Carvalho A, Gray DA. Tocopherol-an intrinsic component of sunflower seed oil bodies. J Am Oil Chem Soc 2006 ; 83 : 341–344. [CrossRef] [Google Scholar]
  • Folmer BM. Sterol surfactants: from synthesis to applications. Adv Coll Interf Sci 2003 ; 103 : 99–119. [CrossRef] [PubMed] [Google Scholar]
  • Frandsen GI, Mundy J, Tzen J. Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 2001 ; 112 : 301–307. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Moreno MJ, Vera-Ruiz EM, Fernandez-Martinez JM, Velasco L, Perez-Vich B. Genetic and molecular analysis of high gamma-tocopherol content in sunflower. Crop Sci 2006 ; 46 : 2015–2021. [CrossRef] [Google Scholar]
  • Goffman FD, Becker HC. Genetic variation of tocopherol content in a germplasm collection of Brassica napus L. Euphytic 2002 ; 125 : 189–196. [CrossRef] [Google Scholar]
  • Gonzalez-Martin I, Hernandez-Hierro JM, Bustamante-Rangel M, Barros-Ferreiro N. Near-infrared spectroscopy (NIRS) reflectance technology for the determination of tocopherols in alfalfa. Anal Bioanal Chem 2006 ; 386 : 1553–1558. [CrossRef] [PubMed] [Google Scholar]
  • Grille S, Zaslawski A, Thiele S, Plat J, Warnecke D. The functions of steryl glycosides come to those who wait: Recent advances in plants, fungi, bacteria and animals. Progr Lipid Res 2010 ; 49 : 262–288. [CrossRef] [Google Scholar]
  • Grusak MA, DellaPenna D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 1999 ; 50 : 133–161. [CrossRef] [PubMed] [Google Scholar]
  • Gul MK, Egesel CO, Tayyar S, Kahrman F. Changes in phytosterols in rapeseed (Brassica napus L.) and their interaction with nitrogen fertilization. Int J Agric Biol 2007 ; 9 : 250–253. [Google Scholar]
  • Hamama AA, Bhardwaj HL, Starner DE. Genotype and growing location effects on phytosterols in canola oil. J Am Oil Chem Soc 2003 ; 80 : 1121–1126. [CrossRef] [Google Scholar]
  • Hampshire J. Importance of unsaponifiable components in oat oil. Muhle + Mischfuttertechnik 1993 ; 130 : 17–19. [Google Scholar]
  • Harker M, Holmberg N, Clayton JC, et al. Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl-CoA reductase. Plant Biotechnol J 2003 ; 1 : 113–121. [CrossRef] [PubMed] [Google Scholar]
  • Hartmann MA. Plant sterols and the membrane environment. Trends Plant Sci 1998 ; 3 : 170–175. [CrossRef] [Google Scholar]
  • Hass CG, Tang SX, Leonard S, Traber MG, Miller JF, Knapp SJ. Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 2006 ; 113 : 767–782. [CrossRef] [PubMed] [Google Scholar]
  • Hey SJ, Powers SJ, Beale MH, Hawkins ND, Ward JL, Halford N. Enhanced seed phytosterol accumulation through expression of a modified HMG-CoA reductase. Plant Biotechnol J 2006 ; 4 : 219–229. [CrossRef] [PubMed] [Google Scholar]
  • Hofius D, Sonnewald U. Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Sci 2003 ; 8 : 6–8. [CrossRef] [PubMed] [Google Scholar]
  • Hourant P, Baeten V, Morales MT, Meurens M, Aparicio R. Oil and fat classification by selected bands of near-infrared spectroscopy. Appl Spectr 2000 ; 54 : 1168–1174. [CrossRef] [Google Scholar]
  • Ibrahim KE, Juvik JA. Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli. J Agric Food Chem 2009 ; 57 : 4636–4644. [CrossRef] [PubMed] [Google Scholar]
  • Izquierdo NG, Aguirrezabal LAN. Genetic variability in the response of fatty acid composition to minimum night temperature during grain filling in sunflower. Field Crops Res 2008 ; 106 : 116–125. [CrossRef] [Google Scholar]
  • Izquierdo NG, Mascioli S, Aguirrezabal LAN, Nolasco SM. Temperature influence during seed filling on tocopherol concentration in a traditional sunflower hybrid. Grasas Y Aceites 2007 ; 58 : 170–178. [Google Scholar]
  • Karunanandaa B, Qi QG, Hao M, et al. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 2005 ; 7 : 384–400. [CrossRef] [PubMed] [Google Scholar]
  • Khallouki F, Spiegelhalder B, Bartsch H, Owen RW. Secondary metabolites of the argan tree (Morocco) may have disease prevention properties. Afr J Biotechnol 2005 ; 4 : 381–388. [Google Scholar]
  • Kriese U, Schumann E, Weber WE, Beyer M, Bruhl L, Matthaus B. Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica 2004 ; 137 : 339–351. [CrossRef] [Google Scholar]
  • Kurilich AC, Tsau GJ, Brown A, et al. Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J Agric Food Chem 1999 ; 47 : 1576–1581. [CrossRef] [PubMed] [Google Scholar]
  • Lacombe S, Souyris I, Berville AJ. An insertion of oleate desaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil. Mol Genet Genom. 2009. [Google Scholar]
  • Lagravere T, Kleiber D, Surel O, Calmon A, Bervill A, Dayd J. Comparison of fatty acid metabolism of two oleic and one conventional sunflower hybrids: a new hypothesis. J Agron and Crop Sci 2004 ; 190 : 223–229. [CrossRef] [Google Scholar]
  • Lampart-Szczapa E, Korczak J, Nogala-Kalucka M, Zawirska-Wojtasiak R. Antioxidant properties of lupin seed products. Food Chem 2003 ; 83 : 279–285. [CrossRef] [Google Scholar]
  • Lampi AM, Kamal-Eldin A, Piironen V. Tocopherols and tocotrienols from oil and cereal grains. Functional Foods: Biochemical and Processing Aspect 2002 ; 2 : 1–38. [Google Scholar]
  • Lechner M, Reiter B, Lorbeer E. Determination of free and esterified sterols in potential new oil seed crops by coupled on-line liquid chromatography-gas-chromatography. Fett-Lipid 1999 ; 101 : 171–177. [CrossRef] [Google Scholar]
  • Leon L, Rallo L, Garrido A. Near-Infrared Spectroscopy (NIRS) analysis of intact olive fruit: an useful tool in olive breeding programs. Grasas Y Aceites 2003 ; 54 : 41–47. [CrossRef] [Google Scholar]
  • Li Y, Wang ZN, Sun XF, Tang KX. Current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. J Integr Plant Biol 2008 ; 50 : 1057–1069. [CrossRef] [PubMed] [Google Scholar]
  • Li Y, Zhou Y, Wang ZA, Sun XF, Tang KX. Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci 2010 ; 178 : 312–320. [CrossRef] [Google Scholar]
  • Lichtenthaler HK. Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 2007 ; 92 : 163–179. [CrossRef] [PubMed] [Google Scholar]
  • Maatta K, Lampi AM, Petterson J, Fogelfors BM, Piironen V, Kamal-Eldin A. Phytosterol content in seven oat cultivars grown at three locations in Sweden. J Sci Food Agric 1999 ; 79 : 1021–1027. [CrossRef] [Google Scholar]
  • Maeda H, Sage TL, Isaac G, Welti R, DellaPenna D. Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 2008 ; 20 : 452–470. [CrossRef] [PubMed] [Google Scholar]
  • Mantese AI, Medan D, Hall AJ. Achene structure, development and lipid accumulation in sunflower cultivars differing in oil content at maturity. Ann Bot 2006 ; 97 : 999–1010. [CrossRef] [PubMed] [Google Scholar]
  • Marwede V, Schierholt A, Mollers C, Becker H. Genotype X environment interactions and heritability of tocopherol contents in canola. Crop Sci 2004 ; 44 : 728–731. [CrossRef] [Google Scholar]
  • Matthaus B, Bruhl L. Comparison of a supercritical fluid extraction method for the extraction of oilseeds with the DGF standard method B-I 5 (87). Fett-Lipid 1999 ; 101 : 203–206. [CrossRef] [Google Scholar]
  • Mene-Saffrane L, DellaPenna D. Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Biochem 2010 ; 48 : 301–309. [CrossRef] [PubMed] [Google Scholar]
  • Mercau JL, Sadras VO, Satorre EH, et al. On-farm assessment of regional and seasonal variation in sunflower yield in Argentina. Agric Syst 2001 ; 67 : 83–103. [CrossRef] [Google Scholar]
  • Moreau RA, Whitaker BD, Hicks KB. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progr Lipid Res 2002 ; 41 : 457–500. [CrossRef] [PubMed] [Google Scholar]
  • Moschner CR, Biskupek-Korell B. Estimating the content of free fatty acids in high-oleic sunflower seeds by near-infrared spectroscopy. Eur J Lipid Sci Technol 2006 ; 108 : 606–613. [CrossRef] [Google Scholar]
  • Murphy DJ. Plant lipids: biology, utilisation and manipulation. Plant lipids: biology, utilisation and manipulation 2005 ; xvii : 403 P. [Google Scholar]
  • Ostlund RE, Racette SB, Stenson WF. Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. Am J Clin Nutr 2003 ; 77 : 1385–1389. [PubMed] [Google Scholar]
  • Palta JP, Whitaker BD, Weiss LS. Plasma-membrane lipids associated with genetic-variability in freezing tolerance and cold-acclimatation of solanum species. Plant Physiol 1993 ; 103 : 793–803. [PubMed] [Google Scholar]
  • Peng LC, Kawagoe Y, Hogan P, Delmer D. Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 2002 ; 295 : 147–150. [CrossRef] [PubMed] [Google Scholar]
  • Perez-Vich B, Garces R, Fernandez-Martinez JM. Inheritance of high palmitic acid content in the sunflower mutant CAS-12 and its relationship with high oleic content. Plant Breed 2002a ; 121 : 49–56. [CrossRef] [Google Scholar]
  • Perez-Vich B, Garces R, Fernandez-Martinez JM. Inheritance of medium stearic acid content in the seed oil of a sunflower mutant CAS-4. Crop Sci 2002b ; 42 : 1806–1811. [CrossRef] [Google Scholar]
  • Perez-Vich B, Velasco L, Fernandez-Martinez JM. Determination of seed oil content and fatty acid composition in sunflower through the analysis of intact seeds, husked seeds, meal and oil by near-infrared reflectance spectroscopy. J Am Oil Chem Soc 1998 ; 75 : 547–555. [CrossRef] [Google Scholar]
  • Peterson DM, Qureshi AA. Genotype and environment effects on tocols of barley and oats. Cereal Chem 1993 ; 70 : 157–162. [Google Scholar]
  • Phillips KM, Ruggio DM, Toivo JI, Swank MA, Simpkins AH. Free and esterified sterol composition of edible oils and fats. J Food Comp Anal 2002 ; 15 : 123–142. [CrossRef] [Google Scholar]
  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM. Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 2000a ; 80 : 939–966. [CrossRef] [Google Scholar]
  • Piironen V, Toivo J, Lampi AM. Natural sources of dietary plant sterols. J Food Comp Anal 2000b ; 13 : 619–624. [CrossRef] [Google Scholar]
  • Pleite R, Martinez-Force E, Garces R. Increase of the stearic acid content in high-oleic sunflower () seeds. J Agric Food Chem 2006 ; 54 : 9383–9388. [CrossRef] [PubMed] [Google Scholar]
  • Roche J, Alignan M, Bouniols A, et al. Sterol content in sunflower seeds (L.) as affected by genotypes and environmental conditions. Food Chem 2010 ; 121 : 990–995. [CrossRef] [Google Scholar]
  • Roche J, Bouniols A, Mouloungui Z, Barranco T, Cerny M. Management of environmental crop conditions to produce useful sunflower oil components. EurJ Lipid Sci Technol 2006 ; 108 : 287–297. [CrossRef] [Google Scholar]
  • Ruiz RA, Maddonni GA. Sunflower seed weight and oil concentration under different post-flowering source-sink ratios. Crop Sci 2006 ; 46 : 671–680. [CrossRef] [Google Scholar]
  • Salas JJ, Martinez-Force E, Garces R. Very long chain fatty acid synthesis in sunflower kernels. J Agric Food Chem 2005 ; 53 : 2710–2716. [CrossRef] [PubMed] [Google Scholar]
  • Salas JJ, Moreno-Perez AJ, Martinez-Force E, Garces R. Characterization of the glycerolipid composition of a high-palmitoleic acid sunflower mutant. EurJ Lipid Sci Technol 2007 ; 109 : 591–599. [CrossRef] [Google Scholar]
  • Sánchez-Muniz F, Canales A, Librelotto J, Nus M. Phytosterols, a double-edged weapon? Grasas y Aceites 2004 ; 55 : 321–327. [Google Scholar]
  • Sanchez-Perez A, Delgado-Zamarreno MM, Bustamante-Rangel M, Hernandez-Mendez J. Automated analysis of vitamin E isomers in vegetable oils by continuous membrane extraction and liquid chromatography-electrochemical detection. J Chromatogr A 2000 ; 881 : 229–241. [CrossRef] [PubMed] [Google Scholar]
  • Sato T, Maw AA, Katsuta M. NIR reflectance spectroscopic analysis of the FA composition in sesame (Sesamum indicum L.) seeds. J Am Oil Chem Soc 2003 ; 80 : 1157–1161. [CrossRef] [Google Scholar]
  • Sato T, Maw AA, Katsuta M. Non-destructive near-infrared reflectance spectroscopic analyses of the major constituents of SesamSesamum indicum L.) whole seeds with different coat color. Plant Prod Sci 2004 ; 7 : 363–366. [CrossRef] [Google Scholar]
  • Sato T, Takahata Y, Noda T, Yanagisawa T, Morishita T, Sakai S. Non-destructive determination of fatty-acid composition of husked sunflower (Helianthus annua L) seeds by near-infrared spectroscopy. J Am Oil Chem Soc 1995 ; 72 : 1177–1183. [CrossRef] [Google Scholar]
  • Sato T, Uezono I, Morishita T, Tetsuka T. Non-destructive estimation of fatty acid composition in seeds of Brassica napus L. by near-infrared spectroscopy. J Am Oil Chem Soc 1998 ; 75 : 1877–1881. [CrossRef] [Google Scholar]
  • Schaller H. The role of sterols in plant growth and development. Progr Lipid Res 2003 ; 42 : 163–175. [CrossRef] [Google Scholar]
  • Schaller H. New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 2004 ; 42 : 465–476. [CrossRef] [PubMed] [Google Scholar]
  • Seppanen CM, Song QH, Csallany AS. The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats, and food systems. J Am Oil Chem Soc 2010 ; 87 : 469–481. [CrossRef] [Google Scholar]
  • Serrano-Vega MJ, Martinez-Force E, Garces R. Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines. Lipids 2005 ; 40 : 369–374. [CrossRef] [PubMed] [Google Scholar]
  • Shimada TL, Hara-Nishimura I. Oil-body-membrane proteins and their physiological functions in plants. Biol Pharmaceut Bull 2010 ; 33 : 360–363. [CrossRef] [Google Scholar]
  • Skoric D, Jocic S, Sakac Z, Lecic N. Genetic possibilities for altering sunflower oil quality to obtain novel oils. Canadian J Physiol Phamacol 2008 ; 86 : 215–221. [CrossRef] [PubMed] [Google Scholar]
  • Stevenson DG, Eller FJ, Wang LP, Jane JL, Wang T, Inglett GE. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J Agric Food Chem 2007 ; 55 : 4005–4013. [CrossRef] [PubMed] [Google Scholar]
  • Szlyk E, Szydlwska-Czerniak A, Kowalczyk-Marzec A. NIR spectroscopy and partial least-squares regression for determination of natural alpha-tocopherol in vegetable oils. J Agric Food Chem 2005 ; 53 : 6980–6987. [CrossRef] [PubMed] [Google Scholar]
  • Talati R, Sobieraj DM, Makanji SS, Phung OJ, Coleman CI. The comparative efficacy of plant sterols and stanols on serum lipids: a systematic review and meta-analysis. J Am Diet Assoc 2010 ; 110 : 719–726. [CrossRef] [PubMed] [Google Scholar]
  • Tammela P, Salo-Vaananen P, Laakso I, Hopia A, Vuorela H, Nygren M. Tocopherols, tocotrienols and fatty acids as indicators of natural ageing in Pinus sylvestris seeds. Scandinav J Forest Res 2005 ; 20 : 378–384. [CrossRef] [Google Scholar]
  • Tang SX, Hass CG, Knapp SJ. Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 2006 ; 113 : 783–799. [CrossRef] [PubMed] [Google Scholar]
  • Tasan M, Demirci M. Total and individual tocopherol contents of sunflower oil at different steps of refining. Eur Food ResTechnol 2005 ; 220 : 251–254. [CrossRef] [Google Scholar]
  • Traber MG. Vitamin E regulatory mechanisms. Annu Rev Nutr 2007 ; 27 : 347–362. [CrossRef] [PubMed] [Google Scholar]
  • Trautwein EA, Duchateau G, Lin YG. Mel’nikov SM, Molhuizen HOF, Ntanios FY. Proposed mechanisms of cholesterol-lowering action of plant sterols. Eur J Lipid Sci Technol 2003 ; 105 : 171–185. [CrossRef] [Google Scholar]
  • Velasco L, Fernandez-Martinez JM, Garcia-Ruiz R, Dominguez J. Genetic and environmental variation for tocopherol content and composition in sunflower commercial hybrids. J Agric Sci 2002 ; 139 : 425–429. [CrossRef] [Google Scholar]
  • Velasco L, Perez-Vich B, Fernandez-Martinez JM. Non-destructive screening for oleic and linoleic acid in single sunflower achenes by near-infrared reflectance spectroscopy. Crop Sci 1999 ; 39 : 219–222. [CrossRef] [Google Scholar]
  • Velasco L, Perez-Vich B, Fernandez-Martinez JM. Novel variation for the tocopherol profile in a sunflower created by mutagenesis and recombination. Plant Breed 2004a ; 123 : 490–492. [CrossRef] [Google Scholar]
  • Velasco L, Perez-Vich B, Fernandez-Martinez JM. Use of near-infrared reflectance spectroscopy for selecting for high stearic acid concentration in single husked achenes of sunflower. Crop Sci 2004b ; 44 : 93–97. [CrossRef] [Google Scholar]
  • Vera-Ruiz EM, Velasco L, Leon AJ, Fernandez-Martinez J, Perez-Vich B. Genetic mapping of the Tph1 gene controlling beta-tocopherol accumulation in sunflower seeds. Mol Breed 2006 ; 17 : 291–296. [CrossRef] [Google Scholar]
  • Verleyen T. Stability of minor components during vegetable oil refining. Applied biological sciences: chemistry. University of Gent. Gant 2002 [Google Scholar]
  • Verleyen T, Forcades M, Verhe R, Dewettinck K, Huyghebaert A, De Greyt W. Analysis of free and esterified sterols in vegetable oils. J Am Oil Chem Soc 2002 ; 79 : 117–122. [CrossRef] [Google Scholar]
  • Vlahakis C, Hazebroek J. Phytosterol accumulation in canola, sunflower, and soybean oils: effects of genetics, planting location, and temperature. J Am Oil Chem Soc 2000 ; 77 : 49–53. [CrossRef] [Google Scholar]
  • Wagner KH, Isnardy B, Elmadfa I. Effects of seed damage on the oxidative stability of poppy seed oil. Eur J Lipid Sci Technol 2003 ; 105 : 219–224. [CrossRef] [Google Scholar]
  • Warner K, Mounts TL. Analysis of tocopherols and phytosterols in vegetable oils by HPLC with evaporative light scattering detection. J Am Oil Chem Soc 1990 ; 67 : 827–831. [CrossRef] [Google Scholar]
  • Weselake RJ, Taylor DC, Rahman MH, et al. Increasing the flow of carbon into seed oil. Biotechnol Adv 2009 ; 27 : 866–878. [CrossRef] [PubMed] [Google Scholar]
  • Zacheo G, Cappello MS, Gallo A, Santino A, Cappello AR. Changes associated with post-harvest ageing in almond seeds. Food Sci Technol 2000 ; 33 : 415–423. [Google Scholar]
  • Zangenberg M, Hansen HB, Jorgensen JR, Hellgren LI. Cultivar and year-to-year variation of phytosterol content in rye (Secale cereale L.). J Agric Food Chem 2004 ; 52 : 2593–2597. [CrossRef] [PubMed] [Google Scholar]
  • Zappel NF, Panstruga R. Heterogeneity and lateral compartmentalization of plant plasma membranes. Curr Op Plant Biol 2008 ; 11 : 632–640. [CrossRef] [Google Scholar]
  • Zheljazkov VD, Vick BA, Baldwin BS, Buehring N, Astatkie T, Johnson B. Oil content and saturated fatty acids in sunflower as a function of planting date, nitrogen rate, and hybrid. Agron J 2009 ; 101 : 1003–1011. [CrossRef] [Google Scholar]
  • Zlatanov MD, Angelova-Romova MJ, Antova GA, Dimitrova RD, Momchilova SM, Nikolova-Damyanova BM. Variations in fatty acids, phospholipids and sterols during the seed development of a high oleic sunflower variety. J Am Oil Chem Soc 2009 ; 86 : 867–875. [CrossRef] [Google Scholar]
  • NF EN ISO 659. Association française de normalisation, 1998. Norme européenne, NF EN ISO 659 d’octobre 1998; Norme française V 03-905 : graines oléagineuses. Détermination de la teneur en huile (Méthode de référence). Afnor. Paris, 1998. [Google Scholar]
  • ISO 9936. International Standard Organization. ISO 9936: animal and vegetable fats and oils-Determination of tocopherols and tocotrienols contents-Method using high-performance liquid chromatography. ISO. Genève, 1997. [Google Scholar]
  • NF EN ISO 12228. Association française de normalisation, European norm, NF EN ISO 12228 May 1999; French norm T 60-258 : animal and vegetable fats and oils-Determination of individual and total sterols contents-Gas chromatographic method. Afnor. Paris, 1999. [Google Scholar]
  • NF EN ISO 5508. Association française de normalisation, European norm, NF EN ISO 5508 juin 1995; French norm T60-234 : Corps gras d’origines animale et végétale-Analyse par chromatographie en phase gazeuse des esters méthyliques d’acides gras. Afnor. Paris, 1995. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.