Open Access
Issue
OCL
Volume 17, Number 3, Mai-Juin 2010
Dossier : Tournesol : champs de recherche
Page(s) 167 - 170
Section Agronomie – Environnement
DOI https://doi.org/10.1051/ocl.2010.0303
Published online 15 May 2010
  • Allen DJ, Ort DR. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 2001 ; 6 : 36–42. [CrossRef] [PubMed] [Google Scholar]
  • Allinne C, Maury P, Sarrafi A, Grieu P. Genetic control of physiological traits associated to low temperature growth in sunflower under early sowing conditions. Plant Sci 2009 ; 177 : 349–359. [CrossRef] [Google Scholar]
  • Alvarado V, Bradford KJ. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ 2002 ; 25 : 1061–1069. [CrossRef] [Google Scholar]
  • Angus JF, Cunningham RB, Moncur MW, Mackenzie DH. Phasic development in field crops I. Thermal response in the seedling phase. Field Crop Res 1980 ; 3 : 365–378. [CrossRef] [Google Scholar]
  • Benech-Arnold RL, Sanchez RA, Kigel J, Galili G. Modeling weed seed germination. Seed development and germination 1995. [Google Scholar]
  • Bewley D, Black M. Seeds : physiology of development and germination. New York, London. Plenum Press, 1994. [Google Scholar]
  • Blacklow WM. Influence of temperature on germination and elongation of the radicle and shoot of corn (Zea mays L.). Crop Sci 1972 ; 12 : 647–650. [CrossRef] [Google Scholar]
  • Brunel S, Teulat-Merah B, Wagner MH, Huguet T, Prosperi JM, Durr C. Using a model-based framework for analysing genetic diversity during germination and heterotrophic growth of Medicago truncatula. Ann Bot-London 2009 ; 103 : 1103–1117. [CrossRef] [Google Scholar]
  • Campos PS, Quartin V, Ramalho JC, Nunes MA. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 2003 ; 160 : 283–292. [CrossRef] [PubMed] [Google Scholar]
  • Casadebaig P. Analyse et modélisation des interactions génotypes-environnement-conduite de culture : application au tournesol (Helianthus annuus L.). Thèse de doctorat. 2008. [Google Scholar]
  • Côme D, Corbineau F. Physiologie végétale, tome 2, croissance et développement, chapitre 2. semences et germination. Hermann Édition 1998. [Google Scholar]
  • Demmig-Adams B, Adams III. WW. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1996 ; 1 : 21–26. [CrossRef] [Google Scholar]
  • Durr C, Aubertot JN, Richard G, Dubrulle P, Duval Y, Boiffin J. Simple : a model for simulation of plant emergence predicting the effects of soil tillage and sowing operations. Soil Sci Soc Am J 2001 ; 65 : 414–423. [CrossRef] [Google Scholar]
  • Ensminger I, Busch F, Huner NPA. Photostasis and cold acclimation : sensing low temperature through photosynthesis. Physiol Plant 2006 ; 126 : 28–44. [CrossRef] [Google Scholar]
  • Fracheboud Y, Jompuk.C, Ribaut JM, Stamp P, Leipner J. Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 2004 ; 56 : 241–253. [CrossRef] [PubMed] [Google Scholar]
  • Fryer MJ, Oxborough K, Martin B, Ort DR, Baker NR. Factors associated with depression of photosynthetic quantum efficiency in maize at low growth temperature. Plant Physiol 1995 ; 108 : 761–767. [PubMed] [Google Scholar]
  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 1998 ; 116 : 571–580. [CrossRef] [PubMed] [Google Scholar]
  • Gombos Z, Wada H, Murata N. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids : a mechanism of chilling tolerance. P Natl Acad Sci USA 1994 ; 91 : 8787–8791. [CrossRef] [Google Scholar]
  • Gouallec JL, Cornic G, Briantais JM. Chlorophyll fluorescence and photoinhibition in a tropical rainforest understory plant. Photosynth Res 1991 ; 27 : 135–142. [CrossRef] [PubMed] [Google Scholar]
  • Groom QJ, Baker NR. Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. Plant Physiol 1992 ; 100 : 1217–1223. [CrossRef] [PubMed] [Google Scholar]
  • Guinchard MP, Robin C, Grieu P, Guckert A. Cold acclimation in white clover subjected to chilling and frost : changes in water and carbohydrates status. Eur J Agron 1997 ; 6 : 225–233. [CrossRef] [Google Scholar]
  • Hatfield JL, Egli DB. Effect of temperature on the rate of soybean hypocotyl elongation and field rmergence. Crop Sci 1974 ; 14 : 423–426. [CrossRef] [Google Scholar]
  • Hekneby M, Antolín MC, Sánchez-Díaz M. Frost resistance and biochemical changes during cold acclimation in different annual legumes. Environ Exp Bot 2006 ; 55 : 305–314. [CrossRef] [Google Scholar]
  • Hewezi T, Leger M, El Kayal W, Gentzbittel L. Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down regulation of gene expression associated with chilling sensitivity. J Exp Bot 2006 ; 57 : 3109–3122. [CrossRef] [PubMed] [Google Scholar]
  • Janowiak F, Luck E, Dörffling K. Chilling tolerance of Maize seedling in the field during cold periods in spring is related to chilling-induced increase in abscisic acid level. J Agron Crop Sci 2003 ; 189 : 156–161. [CrossRef] [Google Scholar]
  • Jompuk C, Fracheboud Y, Stamp P, Leipner J. Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 2005 ; 56 : 1153–1163. [CrossRef] [PubMed] [Google Scholar]
  • Kacperska A. Sensor types in signal transduction pathways in plant cells responding to abiotic stressors : do they depend on stress intensity?. Physiol Plant 2004 ; 122 : 159–168. [CrossRef] [Google Scholar]
  • Koster KL, Lynch DV. Solute accumulation and compartmentation during the cold acclimation of puma rye. Plant Physiol 1992 ; 98 : 108–113. [CrossRef] [PubMed] [Google Scholar]
  • Krause GH. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 1988 ; 74 : 566–574. [CrossRef] [Google Scholar]
  • Lee EA, Staebler MA, Tollenaar M. Genetic variation in physiological discriminators for cold tolerance-early autotrophic phase of maize development. Crop Sci 2002 ; 42 : 1919–1929, [CrossRef] [Google Scholar]
  • Leipner J, Fracheboud Y, Stamp P. Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ Exp Bot 1999 ; 42 : 129–139. [CrossRef] [Google Scholar]
  • Maury P, Berger M, Mojayad F, Planchon C. Photochemical response to drought acclimation in two sunflower genotypes. Physiol Plant 1996 ; 98 : 57–66. [CrossRef] [Google Scholar]
  • Maury P, Berger M, Mojayad F, Planchon C. Leaf water characteristics and drought acclimation in sunflower genotypes. Plant Soil 2000 ; 223 : 153–160. [CrossRef] [Google Scholar]
  • Montané MH, Petzold B, Kloppstech K. Formation of early-light-inducible-protein complexes and status of xanthophyll levels under high light and cold stress in barley (Hordeum vulgare L.). Planta 1999 ; 208 : 519–527. [CrossRef] [Google Scholar]
  • Moot DJ, Scott WR, Roy AM, Nicholls AC. Base temperature and thermal time requirements for germination and emergence of temperate pasture species. New Zeal J Agr Res 2000 ; 43 : 15–52. [CrossRef] [Google Scholar]
  • Murata N, Los DA. Membrane fluidity and temperature perception. Plant Physiol 1997 ; 115 : 875–879. [PubMed] [Google Scholar]
  • Nunes ME, Smith GR. Electrolyte leakage assay capable of quantifying freezing resistance in rose clover. Crop Sci 2003 ; 43 : 1349–1357. [CrossRef] [Google Scholar]
  • Poormohammad Kiani S, Maury P, Grieu P, Sarrafi A. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 2008 ; 175 : 565–573. [CrossRef] [Google Scholar]
  • Poormohammad Kiani S, Talia P, Maury P, et al. Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 2007 ; 172 : 773–787. [CrossRef] [Google Scholar]
  • Poormohammad Kiani S, Grieu P, Maury P, Hewezi T, Gentzbittel L, Sarrafi A. Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor Appl Genet 2007 ; 114 : 193–207. [CrossRef] [PubMed] [Google Scholar]
  • Steinmaus SJ, Prather TS, Holt JS. Estimation of base temperatures for nine weed species. J Exp Bot 2000 ; 51 : 275–286. [CrossRef] [PubMed] [Google Scholar]
  • Verheul MJ, Van Hassel PR, Stamp P. Comparison of maize inbred lines differing in low temperature tolerance : effect of acclimation at suboptimal temperature on chloroplast functioning. Ann Bot-London 1995 ; 76 : 7–14. [CrossRef] [Google Scholar]
  • Wada H, Gombos Z, Murata N. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 1994 ; 91 : 4273–4277. [CrossRef] [Google Scholar]
  • Wanjura DF, Buxton DR, Stapleton HN. A temperature model for predicting initial cotton emergence. Agron J 1970 ; 62 : 741–743. [CrossRef] [Google Scholar]
  • Wheeler TR, Ellis RH. Seed quality, cotyledon elongation at suboptimal temperatures, and the yield of onion. Seed Sci Res 1991 ; 1 : 57–67. [CrossRef] [Google Scholar]
  • Xin Z, Browse J. Cold comfort farm : the acclimation of plants to freezing temperatures. Plant Cell Environ 2000 ; 23 : 893–902. [CrossRef] [Google Scholar]
  • Yelenosky G, Guy CL. Freezing yolerance of citrus, pinach, and petunia leaf tissue : osmotic adjustment and sensitivity to freeze induced cellular dehydration. Plant Physiol 1989 ; 89 : 444–451. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.