Issue
OCL
Volume 32, 2025
Adapting to climate change / Adaptation au changement climatique
Article Number 8
Number of page(s) 13
DOI https://doi.org/10.1051/ocl/2025004
Published online 24 April 2025
  • Abbas S, Sharif MK, Sibt-e-Abbas M, Fikre Teferra T, Sultan MT, Anwar MJ. 2022. Nutritional and therapeutic potential of sesame seeds. J Food Qual 2022 (1): 6163753. [CrossRef] [Google Scholar]
  • Abdel-Aal E-S., Hucl P. 1999. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76: 350–354. [CrossRef] [Google Scholar]
  • Aklakur M. 2018. Natural antioxidants from sea: a potential industrial perspective in aquafeed formulation. Rev Aquac 10: 385–399. [CrossRef] [Google Scholar]
  • Akula Ramakrishna AR, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6: 1720–1731. [CrossRef] [PubMed] [Google Scholar]
  • Baghery MA, Kazemitabar SK, Dehestani A, Mehrabanjoubani P. 2023. Sesame (Sesamum indicum L.) response to drought stress: susceptible and tolerant genotypes exhibit different physiological, biochemical, and molecular response patterns. Physiol Mol Biol Plants 29: 1353–1369. [CrossRef] [PubMed] [Google Scholar]
  • Berhe M, Subramanyam B, Demissie G, Chichaybelu M, Abera FA, Mahroof R, Harvey J. 2023. Effect of storage duration and storage technologies on pest infestations and post-harvest quality loss of stored sesame seeds in Ethiopia. J Stored Prod Res 103: 102161. [CrossRef] [Google Scholar]
  • Bor M, Seckin B, Ozgur R, Yılmaz O, Ozdemir F, Turkan I 2009. Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutyric acid levels of sesame (Sesamum indicum L.). Acta Physiol Plant 31: 655–659. [CrossRef] [Google Scholar]
  • Boureima S, Diouf M. 2011. Besoins en eau, croissance et productivité du sésame (Sesamum indicum L.) en zone semi-aride. Agron Afr. 22. https://doi.org/10.4314/aga.v22i2.68362 [Google Scholar]
  • Cappelaere L, Le Cour Grandmaison J, Martin N Lambert W. 2021. Amino acid supplementation to reduce environmental impacts of broiler and pig production: a review. Front Vet Sci 8: 689259. [CrossRef] [PubMed] [Google Scholar]
  • Chada S, Asiedu SK, Ofoe R. 2023. An overview of plant morpho-physiology, biochemicals, and metabolic pathways under water stress. Horticult Int J 7 (4): 115–125. [CrossRef] [Google Scholar]
  • Chen Z, Fu J, Dou X, Deng Z, Wang X, Ma F, Yu L, Yun Y.-H, Li P, Zhang L. 2023. Comprehensive adulteration detection of sesame oil based on characteristic markers. Food Chem X 18: 100745. [CrossRef] [PubMed] [Google Scholar]
  • Curtis TY, Muttucumaru N, Shewry PR, Parry MAJ, Powers SJ, Elmore JS, Mottram DS, Hook S, Halford NG. 2009. Effects of genotype and environment on free amino acid levels in wheat grain: implications for acrylamide formation during processing. J Agric Food Chem 57: 1013–1021. [CrossRef] [PubMed] [Google Scholar]
  • Deamer D. 2017. The role of lipid membranes in life’s origin. Life 7: 5. [CrossRef] [PubMed] [Google Scholar]
  • Dossa K, Yehouessi LW, Likeng-Li-Ngue BC, Diouf D, Liao B, Zhang X, Cissé N, Bell JM. 2017. Comprehensive screening of some west and central African sesame genotypes for drought resistance probing by agromorphological, physiological, biochemical and seed quality traits. Agronomy 7: 83. [CrossRef] [Google Scholar]
  • Dravie EE, Kortei NK, Essuman EK, Tettey CO, Boakye AA, Hunkpe G. 2020. Antioxidant, phytochemical and physicochemical properties of sesame seed (Sesamum indicum L). Sci Afr 8: e00349. [Google Scholar]
  • Ebrahimian E, Seyyedi SM, Bybordi A, Damalas CA. 2019. Seed yield and oil quality of sunflower, safflower, and sesame under different levels of irrigation water availability. Agric Water Manag 218: 149–157. [CrossRef] [Google Scholar]
  • Eskandari H, Zehtab-Salmasi S, Ghassemi-Golezani K, Gharineh MH. 2009. Effects of water limitation on grain and oil yields of sesame cultivars. J Food Agric Env. 7: 339–342. [Google Scholar]
  • Etienne P, Diquelou S, Prudent M, Salon C, Maillard A, Ourry A. 2018. Macro and micronutrient storage in plants and their remobilization when facing scarcity: the case of drought. Agriculture 8: 14. [CrossRef] [Google Scholar]
  • Gupta D, Rai U, Tripathi R, Inouhe M. 2002. Impacts of fly-ash on soil and plant responses. J Plant Res 115: 401–409. [CrossRef] [PubMed] [Google Scholar]
  • Hoyos BE, Johnson JB, Mani JS, Batley RJ, Trotter T, Bhattarai SP, Naiker M. 2024. The effect of water stress on bioactive compounds in Australian-grown black sesame. Plants 13: 793. [CrossRef] [PubMed] [Google Scholar]
  • Kermani SG, Saeidi G, Sabzalian MR, Gianinetti A. 2019. Drought stress influenced sesamin and sesamolin content and polyphenolic components in sesame (Sesamum indicum L.) populations with contrasting seed coat colors. Food Chem 289: 360–368. [CrossRef] [PubMed] [Google Scholar]
  • Khan IU, Rathore BS, Syed Z. 2019. Evaluation of polyphenols, flavonoids and antioxidant activity in different solvent extracts of sesame (Sesamum indicum L.) genotypes. Int J Seed Spices 9: 52–60. [Google Scholar]
  • Khoo HE, Azlan A, Tang ST, Lim SM. 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 61: 1361779. [CrossRef] [Google Scholar]
  • Kouighat M, Channaoui S, Labhilili M, El Fechtali M, Nabloussi A. 2020. Novel genetic variability in sesame induced via ethyl methane sulfonate. J Crop Improv 37: 1–12. [Google Scholar]
  • Kouighat M, Hanine H, Chetto O, Fakhour S, El Fechtali M Nabloussi A. 2022b. Assessment of novel genetic diversity induced by mutagenesis and estimation of genetic parameters in sesame M4 mutant lines. Int J Plant Biol 13: 644–662. [CrossRef] [Google Scholar]
  • Kouighat M, Hanine H, El FechtaliM Nabloussi A. 2021. First report of sesame mutants tolerant to severe drought stress during germination and early seedling growth stages. Plants 10: 1166. [CrossRef] [PubMed] [Google Scholar]
  • Kouighat M, Harfi ME, Hanine H, Fechtali ME, Nabloussi A. 2022a. Moroccan sesame: current situation, challenges, and recommended actions for its development. OCL 29: 27. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kouighat M, Kettani R, El Fechtali M, Nabloussi A. 2024. Exploring mechanisms of drought-tolerance and adaptation of selected sesame mutant lines. J Agric Food Res 15: 100911. [Google Scholar]
  • Kouighat M, Nabloussi A, Adiba A, Fechtali ME, Hanine H. 2022c. Agromorphological characterization of sesame mutant lines for drought tolerance. Acta Sci Agric 6: 239–246. [Google Scholar]
  • Kouighat M, Nabloussi A, Kettani R, Fakhour S, El Fechtali M, Hamdani A. 2023. Drought-tolerant sesame mutant lines assessed by physiological traits and stress indices under water deficit conditions. J Agric Food Res 14: 100842. [Google Scholar]
  • Langham DR. 2008. Growth and development of sesame. Sesaco Corp 329: 44. [Google Scholar]
  • Mahdavi KA, Masoud Sinaki J, Amini Dehaghi M, Rezvan S, Damavandi A. 2020. Sesame (Sesame indicum L.) biochemical and physiological responses as affected by applying chemical, biological, and nano-fertilizers in field water stress conditions. J Plant Nutr 43: 456–475. [CrossRef] [Google Scholar]
  • Mi S, Wang Y, Zhang X, Sang Y, Wang X. 2022. Authentication of the geographical origin of sesame seeds based on proximate composition, multi-element and volatile fingerprinting combined with chemometrics. Food Chem 397: 133779. [CrossRef] [PubMed] [Google Scholar]
  • Moura A, Savageau MA, Alves R. 2013. Relative amino acid composition signatures of organisms and environments. PLoS One 8 e77319. [CrossRef] [PubMed] [Google Scholar]
  • Najafabadi MY, Ehsanzadeh P. 2017. Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. Photosynthetica 55: 611–622. [CrossRef] [Google Scholar]
  • Ozkan A, Kulak M. 2013. Effects of water stress on growth, oil yield, fatty acid composition and mineral content of Sesamum indicum. J Anim Plant Sci 23 (6): 1686–1690. [Google Scholar]
  • Prisacaru AE. 2016. Effect of antioxidants on polyunsaturated fatty acids − review. Acta Sci Pol Technol Aliment 15: 121–129. [CrossRef] [PubMed] [Google Scholar]
  • Qureshi M, Arslan M, Golukcu M, Bera SK, Uzun B, Yol E. 2023. Assessment of drought tolerance of sesame germplasm with agronomic and quality traits. Crop Sci 63: 2763–2777. [CrossRef] [Google Scholar]
  • Rai AC, Singh M, Shah K. 2012. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol Biochem 61: 108–114. [CrossRef] [PubMed] [Google Scholar]
  • Rao NK, Sastry DVS SR, Bramel PJ. 2002. Effects of shell and low moisture content on peanut seed longevity. Peanut Sci 29: 122–125. [CrossRef] [Google Scholar]
  • Saeed F, Qamar A, Nadeem MT, Ahmed RS, Arshad MS, Afzaal M. 2015. Nutritional composition and fatty acid profile of some promising sesame cultivars. Pak J Food Sci 25: 98–103. [Google Scholar]
  • Shahidi F, Liyana-Pathirana CM, Wall DS. 2006. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99: 478–483. [CrossRef] [Google Scholar]
  • Shao J, Zhang G, Fu J, Zhang B. 2020. Advancement of the preparation methods and biological activity of peptides from sesame oil byproducts: a review. Int J Food Prop 23: 2189–2200. [CrossRef] [Google Scholar]
  • Suja KP, Jayalekshmy A, Arumughan C. 2004. Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. J Agric Food Chem 52: 912–915. [CrossRef] [PubMed] [Google Scholar]
  • Sunil L, Shetty NP. 2022. Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 106: 1783–1798. [CrossRef] [PubMed] [Google Scholar]
  • Tohidi B, Rahimmalek M, Arzani A. 2017. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem 220: 153–161. [CrossRef] [PubMed] [Google Scholar]
  • Wang F, Chen J, Liu X, Zhang J, Zhao D. 2023. Genetic and phenotypic variation of seed oil content in sesame (Sesamum indicum L.) based on multi-environmental data. Front Plant Sci 14: 1153608. [Google Scholar]
  • Wei P, Zhao F, Wang Z, Wang Q, Chai X, Hou G, Meng Q. 2022. Sesame (Sesamum indicum L.): a comprehensive review of nutritional value, phytochemical composition, health benefits, development of food, and industrial applications. Nutrients 14: 4079. [CrossRef] [PubMed] [Google Scholar]
  • Yang M, Hou L, Dong Y, Wang B, Liu H, Wang X. 2024. Moisture content in dehulled sesame seeds: A key factor affecting the aroma and safety quality of sesame paste (tahini) J Food Sci 89: 1361–1372. [CrossRef] [PubMed] [Google Scholar]
  • Yemm EW, Cocking EC, Ricketts RE. 1955. The determination of amino-acids with ninhydrin. Analyst 80: 209–214. [CrossRef] [Google Scholar]
  • Zahran HA, Abd-Elsaber A, Tawfeuk HZ. 2020. Genetic diversity, chemical composition and oil characteristics of six sesame genotypes. OCL 27: 39. [CrossRef] [EDP Sciences] [Google Scholar]
  • Zhang M, Wang O, Cai S, Zhao L, Zhao L. 2023. Composition, functional properties, health benefits and applications of oilseed proteins: a systematic review. Food Res Int 171: 113061. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.