Issue |
OCL
Volume 32, 2025
Non-Food Uses Of Oil- And Protein- Crops / Usages Non Alimentaires des Oléoprotéagineux
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/ocl/2025003 | |
Published online | 24 March 2025 |
- Abdullah I, Ahmad N, Hussain M, Ahmed A, Ahmed U, Park Y-K. 2022. Conversion of biomass blends (walnut shell and pearl millet) for the production of solid biofuel via torrefaction under different conditions. Chemosphere 295: 133894. [Google Scholar]
- Aboelela D, Saleh H, Attia AM, Elhenawy Y, Majozi T, Bassyouni M. 2023. Recent advances in biomass pyrolysis processes for bioenergy production: optimization of operating conditions. Sustainability 15: 11238. [Google Scholar]
- Adeoye AO, Quadri RO, Lawal OS. 2022. Assessment of biofuel potential of tenera palm kernel shell via fixed bed pyrolysis and thermal characterization. Res Surf Interfaces 9: 100091. [Google Scholar]
- Adomou AC, Sinsin B, Van der Maesen LJG. 2006. Phytosociological and chorological approaches to phytogeography: a meso-scale study in Benin. System Geogr Plants 76: 155–178. [Google Scholar]
- Agence internationale de l’énergie (AIE). 2022. Africa Energy Outlook 2022. [Google Scholar]
- Ambali A, Chirwa PW, Chamdimba O, Van Zyl WH. 2011. Review of sustainable development of bioenergy in Africa: an outlook for the future bioenergy industry. [Google Scholar]
- Anwar Z, Gulfraz M, Irshad M. 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7: 163–173. [Google Scholar]
- Azeta O, Ayeni AO, Agboola O, Elehinafe FB. 2021. A review on the sustainable energy generation from the pyrolysis of coconut biomass. Sci Afr 13: e00909. [Google Scholar]
- Basu P. 2013. Gasification theory. Biomass gasification, pyrolysis and torrefaction: 199–248. [Google Scholar]
- Biaye T. 2022. Mesures en laboratoire des émissions et des performances des foyers de cuisson utilisant des briquettes de charbon de biomasse. [Google Scholar]
- Biofuels S. 2005. Method for the Determination of Calorific Value. CEN/TS 14918: 2005. [Google Scholar]
- Bockarie AS, Marais EA, MacKenzie AR. 2020. Air pollution and climate forcing of the charcoal industry in Africa. Environ Sci Technol 54: 13429–13438. [Google Scholar]
- Boko-haya YY, Ouinsavi AIN, Houngbeme GA, Gbaguidi F, Agbangla C. 2017. Traditional uses, phytochemistry and in vitro evaluation of toxicity of Ricinodendron heudelotii (Baill Pierre Ex Heckel) leaves in Benin. Int J Rec Sci Res 8: 21227–21236. [Google Scholar]
- Boko-haya YY, Ouinsavi CAIN, Akin YY, Agbangla C. 2022. Influence of geographic provenance on phenotypic variation in seed and kernel traits of the African oil tree from southern Benin and implications for species breeding. Nova Geodesia 2: 76–76. [Google Scholar]
- Cosyns H, Degrande, A., De Wulf, R., Van Damme, P., Tchoundjeu, Z. 2011. Ricinodendron heudelotii kernel group commercialization and its impact on farmers’ livelihoods in Cameroon. J Agric Rural Dev Trop Subtrop 112: 45–56. [Google Scholar]
- Coulibaly M, N’dri DY, Abouo V, Kouamé CA, Kouassi NK, Amani GN. 2018. The impact of post −harvest traditional technologies on nutritional value and antioxidant activity of seeds Kernels “akpi” of Côte d’Ivoire (West Africa). Int J Food Sci Nutr Eng 8: 15–26. [Google Scholar]
- Demirbaş A, Demirbaş AH. 2004. Estimating the calorific values of lignocellulosic fuels. Energy Explor Exploit 22: 135–143. [Google Scholar]
- Dhyani V, Bhaskar T. 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129: 695–716. [Google Scholar]
- Djeugap FJ, Bernier L, Dostaler D, Khasa D, Fontem DA, Nwaga D. 2013. Opportunités et contraintes agroforestières de Ricinodendron heudelotii au Cameroun. Int J Biolog Chem Sci 7: 344–355. [Google Scholar]
- Ejigu M. 2008. Toward energy and livelihoods security in Africa: smallholder production and processing of bioenergy as a strategy. Nat Resour Forum 32: 152–162. [Google Scholar]
- Ene-Obong H, Onuoha N, Aburime L, Mbah O. 2018. Chemical composition and antioxidant activities of some indigenous spices consumed in Nigeria. Food Chem 238: 58–64. [Google Scholar]
- Fan J, Kalnes TN, Alward M, Klinger J, Sadehvandi A, Shonnard DR. 2011. Life cycle assessment of electricity generation using fast pyrolysis bio-oil. Renew Energy 36: 632–641. [Google Scholar]
- FAO. 1968. Food composition table for Use in Africa. Retrieved December 8, 2022, from https://www.fao.org/3/x6877e/x6877e00.htm. [Google Scholar]
- Franzel S, Akinnifesi FK, Ham C. 2007. Setting priorities among indigenous fruit tree species in africa: examples from Southern, Eastern and Western Africa regions. Indigenous Fruit Trees Trop: Domest Utilliz Commercial 1–69. [Google Scholar]
- Hounsou-Dindin G, Idohou R, Akakpo ADM, Adome N, Adomou AC, Assogbadjo AE, Glèlè Kakaï R. 2022. Assessment of wild oil plants diversity and prioritization for valorization in Benin (West Africa): a multivariate approach. Trees Forests People 7: 100210. [CrossRef] [Google Scholar]
- Husain Z, Ansari KB, Chatake VS, Urunkar Y, Pandit AB, Joshi JB. 2020. Valorisation of biomass pellets to renewable fuel and chemicals using pyrolysis: characterisation of pyrolysis products and its application. Indian Chem Eng 62: 78–91. [CrossRef] [Google Scholar]
- ICRAF. 1999. Ricinodendron heudelotii. [Google Scholar]
- Kaniapan S, Suhaimi H, Hamdan Y, Pasupuleti J. 2021. Experiment analysis on the characteristic of empty fruit bunch, palm kernel shell, coconut shell, and rice husk for biomass boiler fuel. J Mech Eng Sci 15: 8300–8309. [Google Scholar]
- Kinge EE, Djikeng FT, Karuna MSL, Ngoufack FZ, Womeni HM. 2019. Effect of boiling and roasting on the physicochemical properties of Djansang seeds (Ricinodendron heudelotii). Food Sci Nutr 7: 3425. [CrossRef] [PubMed] [Google Scholar]
- Leonard J. 1961. Notulae systematicae XXXII: Observations sur des especes africaines de Clutia, Ricinodendron et Sapium (Euphorbiacees). Bulletin du Jardin botanique de l’État a Bruxelles 31: undefined-undefined. [Google Scholar]
- Manga TT, Fondoun JM, Kengue J, Thiengang C. 2000. Chemical composition of Ricinodendron heudelotii: an indigenous fruit tree in southern Cameroon. Afr Crop Sci J 8: 195–201. [Google Scholar]
- Mollet M, Tiki-Manga T, Kengue, J, Tchoundjeu Z. 1995. The “top 10” species in Cameroon: a survey of farmers’ views on trees. Agroforestry Today 7(3–4): 14–16. [Google Scholar]
- Momeni J, Djialeu Ntchatchoua WP, Fadimatou MT, Akam MT, Ngassoum MB. 2010. Antioxidant activities of some cameroonian plants extracts used in the treatment of intestinal and infectious diseases. Indian J Pharm Sci 72: 140–144. [CrossRef] [PubMed] [Google Scholar]
- Nazar M, Yasar A, Raza SA, Ahmad A, Rasheed R, Shahbaz M, Tabinda AB. 2021. Techno-economic and environmental assessment of rice husk in comparison to coal and furnace oil as a boiler fuel. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01238-3 [Google Scholar]
- Ndumbe LN, Ingram V, Tchamba M, Nya S. 2018. From trees to money: the contribution of njansang (Ricinodendron heudelotii) products to value chain stakeholders’ financial assets in the South West Region of Cameroon. Forests Trees Livelihoods. https://doi.org/10.1080/14728028.2018.1559107 [Google Scholar]
- Negash D, Abegaz A, Smith JU. 2021. Environmental and financial benefits of improved cookstove technologies in the central highlands of Ethiopia. Biomass Bioenergy 150: 106089. [Google Scholar]
- Ngo Mpeck ML, Asaah E, Tchoundjeu Z, Atangana AR. 2003. Strategies for the domestication of Ricinodendron heudelotii: evaluation of variability in natural populations from Cameroon. Food Agric Environ 1: 257–262. [Google Scholar]
- Nguyen ATL, Akanbi TO, Tawiah NA, Aryee ANA. 2022. Valorization of seed and kernel marcs and evaluation of their antioxidant potential. Food Chem 390: 133168. [Google Scholar]
- Pawlak-Kruczek H, Arora A, Mościcki K, Krochmalny K, Sharma S, Niedzwiecki L. 2020. A transition of a domestic boiler from coal to biomass − emissions from combustion of raw and torrefied Palm Kernel shells (PKS). Fuel 263: 116718. [Google Scholar]
- Perea-Moreno M-A., Manzano-Agugliaro F, Hernandez-Escobedo Q, Perea-Moreno A-J. 2018. Peanut shell for energy: properties and its potential to respect the environment. Sustainability 10: 3254. [CrossRef] [Google Scholar]
- Rahib Y, Boushaki T, Sarh B, Chaoufi J. 2021. Combustion and pollutant emission characteristics of argan nut shell (ANS) biomass. Fuel Process Technol 213: 106665. [Google Scholar]
- Ramesh M, Adithya K, Kumar CMJ, Mohan CG, Nalawade J, Prakash R. 2021. 9 − Thermochemical conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels. In Khan A, Jawaid M, Pizzi A, Azum N, Asiri A, Isa I (eds.) Advanced Technology for the Conversion of Waste into Fuels and Chemicals. Woodhead Publishing, 197–215. [Google Scholar]
- Reza MS, Ahmed A, Caesarendra W, Abu Bakar MS, Shams S, Saidur R, Aslfattahi N, Azad AK. 2019. Acacia Holosericea: an invasive species for bio-char, bio-oil, and biogas production. Bioengineering 6: 33. [Google Scholar]
- Sarkar JK, Wang Q. 2020. Different pyrolysis process conditions of south Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies 13: 1970. [Google Scholar]
- Sedai P, Kalita D, Deka D. 2016. Assessment of the fuel wood of India: A case study based on fuel characteristics of some indigenous species of Arunachal Pradesh. Energy Sources, Part A 38: 891–897. [Google Scholar]
- Sharapov N. 1959. Maslichnye rasteniya i masloobrazovatel’nyi protsess (Oil Plants and Oil Production Process), Moscow-Leningrad: Akad. Nauk SSSR. [Google Scholar]
- Shojaeiarani J, Bajwa DS, Bajwa SG. 2019. Properties of densified solid biofuels in relation to chemical composition, moisture content, and bulk density of the biomass. BioResources 14: 4996–5015. [Google Scholar]
- Shrivastava P, Khongphakdi P, Palamanit A, Kumar A, Tekasakul P. 2021. Investigation of physicochemical properties of oil palm biomass for evaluating potential of biofuels production via pyrolysis processes. Biomass Convers Biorefinery 11: 1987–2001. [Google Scholar]
- Tabuna H. 1999. Le marché des produits forestiers non ligneux de l’Afrique centrale en France et en Belgique. Occasional paper, (19). [Google Scholar]
- Tchoundjeu Z, Atangana AR. 2006. Ricinodendron heudelotii. Southampton Centre for Underutilised Crops, University of Southampton, Southampton, UK. [Google Scholar]
- Torres-García M, García-Martín JF, Jiménez-Espadafor Aguilar FJ, Barbin DF, Álvarez-Mateos P. 2020. Vegetable oils as renewable fuels for power plants based on low and medium speed diesel engines. J Energy Inst 93: 953–961. [Google Scholar]
- Turzyński T, Kluska J, Ochnio M, Kardaś D. 2021. Comparative analysis of pelletized and unpelletized sunflower husks combustion process in a batch-type reactor. Materials 14: 2484. [PubMed] [Google Scholar]
- Varma AK, Singh S, Rathore AK, Thakur LS, Shankar R, Mondal P. 2022. Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis. Biomass Convers Biorefinery 12: 4877–4888. [Google Scholar]
- Vihi S, Onaivi MY, Malel MF, Akunna CE, Godfrey O, Selzing PM, Blessing O. 2022. Analysis of household fuelwood consumption as cooking energy and the implications on the environment: a case of Vandeikya Local Government Area of Benue State, Nigeria. UMYU Scientifica 1: 241–253. [CrossRef] [Google Scholar]
- Yakubu O, Adebayo AH, Dokunmu TM, Zhang Y-J., Iweala EEJ. 2019. Cytotoxic effects of compounds isolated from Ricinodendron heudelotii. Molecules 24: 145. [Google Scholar]
- Yang Y, Brammer JG, Mahmood ASN, Hornung A. 2014. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour Technol 169: 794–799. [Google Scholar]
- Yirankinyuki FF, Lamayi DW, Muhammad UA, Musa B. 2018. Assessing the suitability of Ricinodendron heudelotii seed oil for paint formulation. IOSR J Appl Chem 11: 37–42. [Google Scholar]
- Zhang J, Cong R-G., Hasler B. 2018. Sustainable management of Oleaginous trees as a source for renewable energy supply and climate change mitigation: a case study in China. Energies 11: 1123 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.