Open Access
Issue |
OCL
Volume 29, 2022
|
|
---|---|---|
Article Number | 35 | |
Number of page(s) | 9 | |
Section | Quality - Food safety | |
DOI | https://doi.org/10.1051/ocl/2022028 | |
Published online | 14 October 2022 |
- Alipieva K, Korkina L, Orhan IE, Georgiev MI. 2014. Verbascoside − A review of its occurrence (Bio)synthesis and pharmacological significance. Biotechnology Advances : 1065–1076. [CrossRef] [PubMed] [Google Scholar]
- Amiot MJ, Fleuriet A, Macheix JJ. 1986. Importance and evolution of phenolic compounds in olive during growth and maturation. Journal of Agriculture and Food Chemistry 34(5): 823–826. https://doi.org/10.1021/jf00071a014. [CrossRef] [Google Scholar]
- Ammar S, del Mar Contreras M, Gargouri B, Segura-Carretero A, Bouaziz B. 2017. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart. Phytochemical Analysis 28(3): 217–229. [CrossRef] [PubMed] [Google Scholar]
- Angerosa F, D’Alessandro N, Corana F, Mellerio G. 1996. Characterization of phenolic and secoiridoid aglycons present in virgin olive oil by gas chromatography-chemical ionization mass spectrometry. Journal of Chromatography A 736(1–2): 195–203. https://doi.org/10.1016/0021-9673(95)01375-X. [CrossRef] [Google Scholar]
- Balasundram N, Sundram K, Samman S. 2006. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity occurrence and potential uses. Food Chemistry 99(1): 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042. [CrossRef] [Google Scholar]
- Ben Brahim S, Kelebek H, Ammar S, Abichou M, Bouaziz M. 2017. LC-MS phenolic profiling combined with multivariate analysis as an approach for the characterization of extra virgin olive oils of four rare tunisian cultivars during ripening. Food Chemistry 229: 9–19. https://doi.org/10.1016/jfoodchem.2017.02.025. [CrossRef] [PubMed] [Google Scholar]
- Bonoli M, Bendini A, Cerretani L, Lercker G, Toschi TG. 2004. Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. Journal of Agriculture and Food Chemistry 52(23): 7026–7032. https://doi.org/10.1021/jf048868m. [CrossRef] [PubMed] [Google Scholar]
- Brenes M, De Castro A. 1998. Transformation of oleuropein and its hydrolysis products during spanish-style green olive processing. Journal of the Science of Food and Agriculture 77(3): 353–358. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<353::AID-JSFA50>3.0.CO;2-G. [CrossRef] [Google Scholar]
- Çakir A, Mavi A, Kazaz C, Yildirim A, Küfrevioǧlu OI. 2006. Antioxidant activities of the extracts and components of Teucrium orientale l var orientale. Turkish Journal of Chemistry 30(4): 483–494. [Google Scholar]
- Crawford LM, Holstege DM, Wang SC. 2018. High-throughput extraction method for phenolic compounds in olive fruit (Olea europaea ). Journal of Food Composition and Analysis 66: 136–144. https://doi.org/10.1016/jjfca.2017.12.013. [CrossRef] [Google Scholar]
- Dagdelen A, Tümen G, Özcan MM, Dündar E. 2013. Phenolics profiles of olive fruits (Olea europaea L.) and oils from ayvalik domat and gemlik varieties at different ripening stages. Food Chemistry 136(1): 41–45. https://doi.org/10.1016/j.foodchem.2012.07.046. [CrossRef] [PubMed] [Google Scholar]
- D’Imperio M, Cardinali A, D’Antuono I, et al. (2014). Stability-activity of verbascoside a known antioxidant compound at different PH conditions. Food Research International 66: 373–378. https://doi.org/10.1016/j.foodres.2014.09.037. [CrossRef] [Google Scholar]
- Ganzera M, Egger C, Zidorn C, Stuppner H. 2008. Quantitative analysis of flavonoids and phenolic acids in arnica montana L by micellar electrokinetic capillary chromatography. Analytica Chimica Acta 614(2): 196–200. https://doi.org/10.1016/j.aca.2008.03.023. [CrossRef] [PubMed] [Google Scholar]
- Japón-Luján R, Luque-Rodríguez JM, Luque De Castro MD. 2006. Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A 1108: 76–82. https://doi.org/10.1016/j.chroma.2005.12.106. [CrossRef] [PubMed] [Google Scholar]
- Jerman T, Trebše P, Mozetič Vodopivec B. 2010. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chemistry 123: 175–182. https://doi.org/10.1016/j.foodchem.2010.04.006. [CrossRef] [Google Scholar]
- Konno K, Yasui H, Hirayama C, Shinbo H. 1998. Glycine protects against strong protein-deaturing activity of oleuropein a phenolic compound in privet leaves. Journal of Chemical Ecology 24(4): 735–751. https://doi.org/10.1023/A:1022350521287. [CrossRef] [Google Scholar]
- Lopez-Lazaro M. 2009. Distribution and biological activities of the flavonoid luteolin. Mini-Reviews in Medicinal Chemistry 9(1): 31–59. https://doi.org/10.2174/138955709787001712. [CrossRef] [Google Scholar]
- Machado M, Felizardo C, Fernandes-Silva AA, Nunes FM, Barros A. 2013. Polyphenolic compounds antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive Cv “Cobrançosa” under different irrigation regimes. Food Research International 51(1): 412–421. https://doi.org/10.1016/j.foodres.2012.12.056. [CrossRef] [Google Scholar]
- Malheiro R, Mendes P, Fernandes F, Rodrigues N, Bento A, Pereira JA. 2014. Bioactivity and phenolic composition from natural fermented table olives. Food Function 5(12): 3132–3142. https://doi.org/10.1039/C4FO00560K. [CrossRef] [PubMed] [Google Scholar]
- Malik NSA, Bradford JM. 2006. Changes in oleuropein levels during differentiation and development of floral buds in “Arbequina” Olives. Scientia Horticulturae (Amsterdam) 110(3): 274–278. https://doi.org/10.1016/j.scienta.2006.07.016. [CrossRef] [Google Scholar]
- Martí R, Valcárcel M, Herrero-Martínez JM, Cebolla-Cornejo J, Roselló S. 2015. Fast simultaneous determination of prominent polyphenols in vegetables and fruits by reversed phase liquid chromatography using a fused-core column. Food Chemistry 169: 169–179. https://doi.org/10.1016/j.foodchem.2014.07.151. [CrossRef] [PubMed] [Google Scholar]
- Obied HK, Prenzler PD, Ryan D, et al. 2008. Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Natural Product Reports 25(6): 1167. https://doi.org/10.1039/b719736e. [CrossRef] [PubMed] [Google Scholar]
- Orhan F, Gulluce M, Ozkan H, Alpsoy L. 2013. Determination of the antigenotoxic potencies of some luteolin derivatives by using a eukaryotic cell system saccharomyces cerevisiae. Food Chemistry 141(1): 366–372. https://doi.org/10.1016/j.foodchem.2013.02.089. [CrossRef] [PubMed] [Google Scholar]
- Peng LQ, Li Q, Chang Y, et al. 2016. Determination of natural phenols in olive fruits by chitosan assisted matrix solid-phase dispersion microextraction and ultrahigh performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. Journal of Chromatography A 1456: 68–76. https://doi.org/10.1016/jchroma2016.06.011. [CrossRef] [PubMed] [Google Scholar]
- Quirantes-Piné R, Lozano-Sánchez J, Herrero M, Ibáñez E, Segura-Carretero A, Fernández-Gutiérrez A. 2013. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. Phytochemical Analyses 24(3): 213–223. https://doi.org/10.1002/pca.2401. [CrossRef] [Google Scholar]
- Ryan D, Robards K. 1998. Phenolic compounds in olives. Analyst 123(5): 31R–44R. https://doi.org/10.1039/a708920a. [CrossRef] [Google Scholar]
- Stalikas CD. 2007. Extraction separation and detection methods for phenolic acids and flavonoids. Journal of Separation Science 30(18): 3268–3295. https://doi.org/10.1002/jssc200700261. [CrossRef] [PubMed] [Google Scholar]
- Taamalli A, Arráez-Román D, Ibañez E, Zarrouk M, Segura-Carretero A, Fernández-Gutiérrez A. 2012. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. Journal of Agriculture and Food Chemistry 60(3): 791–798. https://doi.org/10.1021/jf204233u. [CrossRef] [PubMed] [Google Scholar]
- Taamalli A, Abaza L, Arráez R, et al. 2013. Characterisation of phenolic compounds by HPLC-TOF/IT/MS in buds and open flowers of “chemlali” olive cultivar. Phytochemical Analysis 24(5): 504–512. https://doi.org/10.1002/pca.2450. [CrossRef] [PubMed] [Google Scholar]
- Uccella N. 2000. Olive Biophenols: biomolecular characterization distribution and phytoalexin histochemical localization in the drupes. Trends in Food Science & Technology : 315–327. https://doi.org/10.1016/S0924-2244(01)00029-2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.