Issue
OCL
Volume 28, 2021
Green and white biotechnologies in the fields of lipids and oil- and proteincrops / Biotechnologies vertes et blanches dans les domaines des lipides et oléoprotéagineux
Article Number 50
Number of page(s) 13
DOI https://doi.org/10.1051/ocl/2021039
Published online 15 November 2021
  • Al Amin N, Ahmad N, Wu N, et al. 2019. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max L.). BMC Biotechnol 19: 9. [CrossRef] [PubMed] [Google Scholar]
  • An D, Suh MC. 2015. Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa. Plant Biotechnol R 9: 137–148. [CrossRef] [Google Scholar]
  • Aymé L, Arragain S, Canonge M, et al. 2018. Arabidopsis thaliana DGAT3 is a [2fe-2s] protein involved in TAG biosynthesis. Sci Rep 8: 17254. [CrossRef] [PubMed] [Google Scholar]
  • Azlan NS, Guo ZH, Yung WS, et al. 2021. In silico analysis of acyl-CoA-binding protein expression in soybean. Front Plant Sci 12: 646938. [CrossRef] [PubMed] [Google Scholar]
  • Aznar-Moreno JA, Venegas Calerón M, Martínez-Force E, et al. 2014. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds. Physiol Plant 150: 363–373. [CrossRef] [PubMed] [Google Scholar]
  • Aznar-Moreno JA, Venegas-Calerón M, Du ZY, et al. 2016. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities. Plant Physiol Biochem 102: 141–150. [CrossRef] [PubMed] [Google Scholar]
  • Aznar-Moreno JA, Venegas-Calerón M, Du ZY, et al. 2020. Characterization and function of a sunflower (Helianthus annuus L.) class II acyl-CoA-binding protein. Plant Sci 300: 110630. [CrossRef] [PubMed] [Google Scholar]
  • Bajguz A, Chmur M, Gruszka D. 2020. Comprehensive overview of the brassinosteroid biosynthesis pathways: Substrates, products, inhibitors, and connections. Front Plant Sci 11: 1034. [CrossRef] [PubMed] [Google Scholar]
  • Banaś W, Sanchez Garcia A, Banaś A, Stymne S. 2013. Activities of acyl-CoA: Diacylglycerol acyltransferase (DGAT) and phospholipid: Diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. Planta 237: 1627–1636. [CrossRef] [PubMed] [Google Scholar]
  • Bates PD. 2016. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta 1861: 1214–1225. [CrossRef] [PubMed] [Google Scholar]
  • Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B. 2007. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50: 825–838. [CrossRef] [PubMed] [Google Scholar]
  • Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. 2008. Storage reserve accumulation in Arabidopsis: Metabolic and developmental control of seed filling. Arabidopsis Book 6: e0113. [CrossRef] [PubMed] [Google Scholar]
  • Baud S, Lepiniec L. 2010. Physiological and developmental regulation of seed oil production. Prog Lipid Res 49: 235–249. [CrossRef] [PubMed] [Google Scholar]
  • Benzioni A, Van Boven M, Ramamoorthy S, Mills D. 2007. Dynamics of fruit growth, accumulation of wax esters, simmondsins, proteins and carbohydrates in jojoba. Indu Crop Prod 26: 337–344. [CrossRef] [Google Scholar]
  • Bleckmann A, Alter S, Dresselhaus T. 2014. The beginning of a seed: Regulatory mechanisms of double fertilization. Front Plant Sci 5: 452. [CrossRef] [PubMed] [Google Scholar]
  • Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB. 2003. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15: 1020–1033. [CrossRef] [PubMed] [Google Scholar]
  • Boulard C, Fatihi A, Lepiniec L, Dubreucq B. 2017. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. Biochim Biophys Acta Gene Regul Mech 1860: 1069–1078. [CrossRef] [PubMed] [Google Scholar]
  • Brown AP, Johnson P, Rawsthorne S, Hills MJ. 1998. Expression and properties of acyl-CoA binding protein from Brassica napus. Plant Physiol Biochem 36: 629–635. [CrossRef] [Google Scholar]
  • Burgal J, Shockey J, Lu C, et al. 2008. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6: 819–831. [CrossRef] [PubMed] [Google Scholar]
  • Cai G, Wang G, Kim S-C, Li J, Zhou Y, Wang X. 2021. Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. Biotechnol Biofuels 14: 49. [CrossRef] [PubMed] [Google Scholar]
  • Cai Y, Goodman JM, Pyc M, Mullen RT, Dyer JM, Chapman KD. 2015. Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. Plant Cell 27: 2616–2636. [CrossRef] [PubMed] [Google Scholar]
  • Cai Y, McClinchie E, Price A, et al. 2017. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. Plant Biotechnol J 15: 824–836. [CrossRef] [PubMed] [Google Scholar]
  • Cernac A, Benning C. 2004. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40: 575–585. [CrossRef] [PubMed] [Google Scholar]
  • Ciurescu G, Ropota M, Toncea I, Habeanu M. 2016. Camelia (Camelina sativa L. Crantz Variety) oil and seeds as n-3 fatty acids rich products in broiler diets and its effects on performance, meat fatty acid composition, immune tissue weights, and plasma metabolic profile. J Agric Sci Technol 18: 315–326. [Google Scholar]
  • Chapman KD, Ohlrogge JB. 2012. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287: 2288–2294. [CrossRef] [PubMed] [Google Scholar]
  • Chen M, Xuan L, Wang Z, et al. 2014. TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in Arabidopsis. Plant Physiol 165: 905–916. [CrossRef] [PubMed] [Google Scholar]
  • Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H. 2015. TRANSPARENT TESTA GLABRA1 regulates the accumulation of seed storage reserves in Arabidopsis. Plant Physiol 169: 391–402. [CrossRef] [PubMed] [Google Scholar]
  • Clemente TE, Cahoon EB. 2009. Soybean oil: Genetic approaches for modification of functionality and total content. Plant Physiol 151: 1030–1040. [CrossRef] [PubMed] [Google Scholar]
  • d’Andréa S, Canonge M, Beopoulos A, et al. 2007. At5g50600 encodes a member of the short-chain dehydrogenase reductase superfamily with 11beta- and 17beta-hydroxysteroid dehydrogenase activities associated with Arabidopsis thaliana seed oil bodies. Biochimie 89: 222–229. [CrossRef] [PubMed] [Google Scholar]
  • Dahlqvist A, Stahl U, Lenman M, et al. 2000. Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97: 6487–6492. [CrossRef] [PubMed] [Google Scholar]
  • Dar AA, Choudhury AR, Kancharla PK, Arumugam N. 2017. The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci 8: 1789. [CrossRef] [PubMed] [Google Scholar]
  • Demski K, Jeppson S, Lager I, et al. 2019. Isoforms of acyl-CoA: Diacylglycerol acyltransferase2 differ substantially in their specificities toward erucic acid. Plant Physiol 181: 1468–1479. [CrossRef] [PubMed] [Google Scholar]
  • Ding LN, Gu SL, Zhu FG, et al. 2020. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC Plant Biol 20: 21. [CrossRef] [PubMed] [Google Scholar]
  • Do PT, Nguyen CX, Bui HT, et al. 2019. Demonstration of highly efficient dual gRNA CRISPR/cas9 editing of the homeologous GMFAD2-1A and GMFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol 19: 311. [CrossRef] [PubMed] [Google Scholar]
  • Dresselhaus T, Sprunck S, Wessel GM. 2016. Fertilization mechanisms in flowering plants. Curr Biol 26: R125–R139. https://doi.org/10.1016/j.cub.2015.12.032. [CrossRef] [PubMed] [Google Scholar]
  • Du C, Chen Y, Wang K, et al. 2018. Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2. J Exp Bot 70: 985–994. [Google Scholar]
  • Durrett TP, Benning C, Ohlrogge J. 2008. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54: 593–607. [CrossRef] [PubMed] [Google Scholar]
  • Dyer JM, Stymne S, Green AG, Carlsson AS. 2008. High-value oils from plants. Plant J 54: 640–655. [CrossRef] [PubMed] [Google Scholar]
  • Engeseth NJ, Pacovsky RS, Newman T, Ohlrogge JB. 1996. Characterization of an acyl-CoA-binding protein from Arabidopsis thaliana. Arch Biochem Biophys 331: 55–62. [CrossRef] [PubMed] [Google Scholar]
  • Focks N, Benning C. 1998. WRINKLED1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118: 91–101. [CrossRef] [PubMed] [Google Scholar]
  • Froissard M, D’Andréa S, Boulard C, Chardot T. 2009. Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res 9: 428–438. [CrossRef] [PubMed] [Google Scholar]
  • Gao H, Gao Y, Zhang F, et al. 2021. Functional characterization of an novel acyl-CoA: Diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from Camelina sativa. Plant Sci 303: 110752. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Solis A, Han G, Gan L, et al. 2020. Unregulated sphingolipid biosynthesis in gene-edited Arabidopsis ORM mutants results in nonviable seeds with strongly reduced oil content. Plant Cell 32: 2474–2490. [CrossRef] [PubMed] [Google Scholar]
  • Greer MS, Cai Y, Gidda SK, et al. 2020. SEIPIN isoforms interact with the membrane-tethering protein VAP27-1 for lipid droplet formation. Plant Cell 32: 2932–2950. [CrossRef] [PubMed] [Google Scholar]
  • Hanano A, Burcklen M, Flenet M, et al. 2006. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281: 33140–33151. [CrossRef] [PubMed] [Google Scholar]
  • Harker M, Hellyer A, Clayton JC, Duvoix A, Lanot A, Safford R. 2003. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed. Planta 216: 707–715. [CrossRef] [PubMed] [Google Scholar]
  • He M, Qin CX, Wang X, Ding NZ. 2020. Plant unsaturated fatty acids: Biosynthesis and regulation. Front Plant Sci 11: 390. [CrossRef] [PubMed] [Google Scholar]
  • Hernández ML, Whitehead L, He Z, et al. 2012. A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants. Plant Physiol 160: 215–225. [CrossRef] [PubMed] [Google Scholar]
  • Hills MJ, Dann R, Lydiate D, Sharpe A. 1994. Molecular cloning of a cDNA from Brassica napus L. for a homologue of acyl-CoA-binding protein. Plant Mol Biol 25: 917–920. [CrossRef] [PubMed] [Google Scholar]
  • Hsiao AS, Haslam RP, Michaelson LV, et al. 2014. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci Rep 34: e00165. [CrossRef] [PubMed] [Google Scholar]
  • Huang AHC. 2018. Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol 176: 1894–1918. [CrossRef] [PubMed] [Google Scholar]
  • Ischebeck T, Krawczyk HE, Mullen RT, Dyer JM, Chapman KD. 2020. Lipid droplets in plants and algae: distribution, formation, turnover and function. Semin Cell Dev Biol 108: 82–93. [CrossRef] [PubMed] [Google Scholar]
  • Ivarson E, Iven T, Sturtevant D, et al. 2017. Production of wax esters in the wild oil species Lepidium campestre. In Crops Prod 108: 535–542. [CrossRef] [Google Scholar]
  • Iven T, Hornung E, Heilmann M, Feussner I. 2016. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Plant Biotechnol J 14: 252–259. [CrossRef] [PubMed] [Google Scholar]
  • Jacquier N, Mishra S, Choudhary V, Schneiter R. 2013. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J Cell Sci 126: 5198–5209. [PubMed] [Google Scholar]
  • Jako C, Kumar A, Wei Y, et al. 2001. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126: 861–874. [CrossRef] [PubMed] [Google Scholar]
  • Jessen D, Roth C, Wiermer M, Fulda M. 2015. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis. Plant Physiol 167: 351–366. [CrossRef] [PubMed] [Google Scholar]
  • Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P. 2007. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol 63: 257–271. [Google Scholar]
  • Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A. 2006. Neutral lipid biosynthesis in engineered Escherichia coli: Jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72: 1373–1379. [CrossRef] [PubMed] [Google Scholar]
  • Kanai M, Yamada T, Hayashi M, Mano S, Nishimura M. 2019. Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil. Sci Rep 9: 8924. [CrossRef] [PubMed] [Google Scholar]
  • Katavic V, Reed DW, Taylor DC, et al. 1995. Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108: 399–409. [CrossRef] [PubMed] [Google Scholar]
  • Kazaz S, Barthole G, Domergue F, et al. 2020. Differential activation of partially redundant Δ9 stearoyl-ACP desaturase genes is critical for omega-9 monounsaturated fatty acid biosynthesis during seed development in Arabidopsis. Plant Cell 32: 3613–3637. [CrossRef] [PubMed] [Google Scholar]
  • Kelly AA. 2018. Lipid composition of Arabidopsis thaliana seeds. In: Wenk M, ed. Encyclopedia of lipidomics. Dordrecht: Springer. [Google Scholar]
  • Kim HU, Hsieh K, Ratnayake C, Huang AH. 2002. A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem 277: 22677–22684. [CrossRef] [PubMed] [Google Scholar]
  • Kim HU, Lee KR, Go YS, Jung JH, Suh MC, Kim JB. 2011. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol 52: 983–993. [CrossRef] [PubMed] [Google Scholar]
  • Kim S, Yamaoka Y, Ono H, et al. 2013. AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc Natl Acad Sci USA 110: 773–778. [CrossRef] [PubMed] [Google Scholar]
  • Kong Q, Ma W. 2018. WRINKLED1 transcription factor: How much do we know about its regulatory mechanism? Plant Sci 272: 153–156. [CrossRef] [PubMed] [Google Scholar]
  • Kretzschmar FK, Doner NM, Krawczyk HE, et al. 2020. Identification of low-abundance lipid droplet proteins in seeds and seedlings. Plant Physiol 182: 1326–1345. [CrossRef] [PubMed] [Google Scholar]
  • Lager I, Jeppson S, Gippert AL, Feussner I, Stymne S, Marmon S. 2020. Acyltransferases regulate oil quality in Camelina sativa through both acyl donor and acyl acceptor specificities. Front Plant Sci 11: 1144. [CrossRef] [PubMed] [Google Scholar]
  • Lai SH, Chye ML. 2021. Plant acyl-CoA-binding proteins-their lipid and protein interactors in abiotic and biotic stresses. Cells 10(5): 1064. [CrossRef] [PubMed] [Google Scholar]
  • Lardizabal K, Effertz R, Levering C, et al. 2008. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol 148: 89–96. [CrossRef] [PubMed] [Google Scholar]
  • Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW. 2000. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol 122: 645–655. [CrossRef] [PubMed] [Google Scholar]
  • Lee HG, Kim H, Suh MC, Kim HU, Seo PJ. 2018. The MYB96 transcription factor regulates triacylglycerol accumulation by activating DGAT1 and PDAT1 expression in Arabidopsis seeds. Plant Cell Physiol 59: 1432–1442. [PubMed] [Google Scholar]
  • Lee KR, Jeon I, Yu H, et al. 2021. Increasing monounsaturated fatty acid contents in hexaploid Camelina sativa seed oil by FAD2 gene knockout using CRISPR-Cas9. Front Plant Sci 12: 702. [Google Scholar]
  • Li Y, Beisson F, Pollard M, Ohlrogge J. 2006. Oil content of Arabidopsis seeds the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67: 904–15. [CrossRef] [PubMed] [Google Scholar]
  • Li R, Yu K, Hildebrand DF. 2010. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids 45: 145–157. [CrossRef] [PubMed] [Google Scholar]
  • Li N, Gügel IL, Giavalisco P, et al. 2015. FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol 13: e1002053. [CrossRef] [PubMed] [Google Scholar]
  • Li N, Xu C, Li-Beisson Y, Philippar K. 2016. Fatty acid and lipid transport in plant cells. Trends Plant Sci 21: 145–158. [CrossRef] [PubMed] [Google Scholar]
  • Li D, Jin C, Duan S, et al. 2017. MYB89 transcription factor represses seed oil accumulation. Plant Physiol 173: 1211–1225. [CrossRef] [PubMed] [Google Scholar]
  • Li X, Guan R, Fan J, Zhu LH. 2019. Development of industrial oil crop Crambe abyssinica for wax ester production through metabolic engineering and cross breeding. Plant Cell Physiol 60: 1274–1283. [CrossRef] [PubMed] [Google Scholar]
  • Li N, Meng H, Li S, et al. 2020. Two plastid fatty acid exporters contribute to seed oil accumulation in Arabidopsis. Plant Physiol 182: 1910–1919. [CrossRef] [PubMed] [Google Scholar]
  • Lin LJ, Tzen JT. 2004. Two distinct steroleosins are present in seed oil bodies. Plant Physiol Biochem 42: 601–608. [CrossRef] [PubMed] [Google Scholar]
  • Liu J, Hua W, Zhan G, et al. 2010. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of WRI1-like gene from Brassica napus. Plant Physiol Biochem 48: 9–15. [CrossRef] [PubMed] [Google Scholar]
  • Liu WX, Liu HL, Qu le Q. 2013. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. Theor Appl Genet 126: 2289–2297. [CrossRef] [PubMed] [Google Scholar]
  • Lou Y, Schwender J, Shanklin J. 2014. FAD2 and FAD3 desaturases form heterodimers that facilitate metabolic channeling in vivo. J Biol Chem 289: 17996–18007. [CrossRef] [PubMed] [Google Scholar]
  • López-Ribera I, La Paz JL, Repiso C, et al. 2014. The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size. Plant Physiol 164: 1237–1249. [CrossRef] [PubMed] [Google Scholar]
  • Lu C, Xin Z, Ren Z, Miquel M, Browse J. 2009. An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci USA 106: 18837–18842. [CrossRef] [PubMed] [Google Scholar]
  • Lu S, Aziz M, Sturtevant D, Chapman KD, Guo L. 2020. Heterogeneous Distribution of Erucic Acid in Brassica napus Seeds. Front. Plant Sci. 10: 1744. [CrossRef] [Google Scholar]
  • Lung SC, Weselake RJ. 2006. Diacylglycerol acyltransferase: A key mediator of plant triacylglycerol synthesis. Lipids 41: 1073–1088. [CrossRef] [PubMed] [Google Scholar]
  • Lung SC, Chye ML. 2016. Deciphering the roles of acyl-CoA-binding proteins in plant cells. Protoplasma 253: 1177–1195. [CrossRef] [PubMed] [Google Scholar]
  • Ma S, Du C, Taylor DC, Zhang M. 2021. Concerted increases of FAE1 expression level and substrate availability improve and singularize the production of very-long-chain fatty acids in Arabidopsis seeds. Plant Direct 5: e00331. [PubMed] [Google Scholar]
  • Marmon S, Sturtevant D, Herrfurth C, Chapman K, Stymne S, Feussner I. 2017. Two acyltransferases contribute differently to linolenic acid levels in seed oil. Plant Physiol 173: 2081–2095. [CrossRef] [PubMed] [Google Scholar]
  • Matthaus B, Özcan MM, Al Juhaimi F. 2016. Some rape/canola seed oils: Fatty acid composition and tocopherols. Z Naturforsch C J Biosci 71: 73–77. [CrossRef] [PubMed] [Google Scholar]
  • Metz JG, Pollard MR, Anderson L, Hayes TR, Lassner MW. 2000. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol 122: 635–644. [CrossRef] [PubMed] [Google Scholar]
  • Mhaske V, Beldjilali K, Ohlrogge J, Pollard M. 2005. Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid: Diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem 43: 413–417. [CrossRef] [PubMed] [Google Scholar]
  • Michaelson LV, Napier JA, Molino D, Faure JD. 2016. Plant sphingolipids: Their importance in cellular organization and adaption. Biochim Biophys Acta 1861: 1329–1335. [CrossRef] [PubMed] [Google Scholar]
  • Mietkiewska E, Brost JM, Giblin EM, Barton DL, Taylor DC. 2007. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet. Plant Biotechnol J 5: 636–645. [CrossRef] [PubMed] [Google Scholar]
  • Miquel M, Trigui G, d’Andréa S, et al. 2014. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiol 164: 1866–1878. [CrossRef] [PubMed] [Google Scholar]
  • Miwa TK. 1971. Jojoba oil wax esters and derived fatty acids and alcohols: Gas chromatographic analyses. J Am Oil Chem Soc 48: 259–264. [CrossRef] [Google Scholar]
  • Mu J, Tan H, Zheng Q, et al. 2008. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148: 1042–1054. [CrossRef] [PubMed] [Google Scholar]
  • Naested H, Frandsen GI, Jauh GY, et al. 2000. Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol 44: 463–476. [CrossRef] [PubMed] [Google Scholar]
  • Oakes J, Brackenridge D, Colletti R, et al. 2011. Expression of fungal diacylglycerol acyltransferase2 genes to increase kernel oil in maize. Plant Physiol 155: 1146–1157. [CrossRef] [PubMed] [Google Scholar]
  • Ohlrogge J, Browse J. 1995. Lipid biosynthesis. Plant Cell 7: 957–970. [PubMed] [Google Scholar]
  • Ohlrogge JB, Pollard MR, Stumpf PK. 1978. Studies on biosynthesis of waxes by developing jojoba seed tissue. Lipids 13: 203–210. [CrossRef] [Google Scholar]
  • Ozseyhan ME, Li P, Na G, Li Z, Wang C, Lu C. 2018. Improved fatty acid profiles in seeds of Camelina sativa by artificial microRNA mediated FATB gene suppression. Biochem Biophys Res Commun 503: 621–624. [CrossRef] [PubMed] [Google Scholar]
  • Poxleitner M, Rogers SW, Lacey Samuels A, Browse J, Rogers JC. 2006. A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J 47: 917–933. [CrossRef] [PubMed] [Google Scholar]
  • Premnath A, Narayana M, Ramakrishnan C, Kuppusamy S, Chockalingam V. 2016. Mapping quantitative trait loci controlling oil content, oleic acid and linoleic acid content in sunflower (Helianthus annuus L.). Mol Breed 36: 106. [CrossRef] [Google Scholar]
  • Purkrtova Z, d’Andrea S, Jolivet P, et al. 2007. Structural properties of caleosin: a MS and CD study. Arch Biochem Biophys 464: 335–343. [CrossRef] [PubMed] [Google Scholar]
  • Pyc M, Cai Y, Gidda SK, et al. 2017. Arabidopsis lipid droplet-associated protein (LDAP) – Interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant J 92: 1182–1201. [CrossRef] [PubMed] [Google Scholar]
  • Pyc M, Gidda SK, Seay D, et al. 2021. LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. Plant Cell 33: 3076–3103. [CrossRef] [PubMed] [Google Scholar]
  • Raboanatahiry NH, Lu G, Li M. 2015a. Computational prediction of acyl-CoA binding proteins structure in Brassica napus. PLoS One 10: e0129650. [CrossRef] [PubMed] [Google Scholar]
  • Raboanatahiry NH, Yin Y, Chen L, Li M. 2015b. Genome-wide identification and phylogenic analysis of kelch motif containing ACBP in Brassica napus. BMC Genomics 16: 512. [CrossRef] [PubMed] [Google Scholar]
  • Raboanatahiry N, Wang B, Yu L, Li M. 2018. Functional and structural diversity of acyl-CoA binding proteins in oil crops. Front Genet 9: 182. [CrossRef] [PubMed] [Google Scholar]
  • Rajangam AS, Gidda SK, Craddock C, Mullen RT, Dyer JM, Eastmond PJ. 2013. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds. Plant Physiol 161: 72–80. [Google Scholar]
  • Regmi A, Shockey J, Kotapati HK, Bates PD. 2020. Oil-producing metabolons containing DGAT1 use separate substrate pools from those containing DGAT2 or PDAT. Plant Physiol 184: 720–737. [CrossRef] [PubMed] [Google Scholar]
  • Roesler K, Shen B, Bermudez E, et al. 2016. An improved variant of soybean type 1 diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Physiol 171: 878–893. [PubMed] [Google Scholar]
  • Rost TL, Paterson KE. 1978. Structural and histochemical characterization of the cotyledon storage organelles of jojoba (Simmondsia chinensis). Protoplasma 95: 1–10. [CrossRef] [Google Scholar]
  • Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L. 1999. The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37: 831–840. [CrossRef] [PubMed] [Google Scholar]
  • Saha S, Enugutti B, Rajakumari S, Rajasekharan R. 2006. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141: 1533–1543. [CrossRef] [PubMed] [Google Scholar]
  • Salas JJ, Ohlrogge JB. 2002. Characterization of substrate specificity of plant FATA and FATB acyl-ACP thioesterases. Arch Biochem Biophys 403: 25–34. [CrossRef] [PubMed] [Google Scholar]
  • Shao Q, Liu X, Su T, Ma C, Wang P. 2019. New insights into the role of seed oil body proteins in metabolism and plant development. Front Plant Sci 10: 1568. [CrossRef] [PubMed] [Google Scholar]
  • Shockey JM, Gidda SK, Chapital DC, et al. 2006. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18: 2294–2313. [CrossRef] [PubMed] [Google Scholar]
  • Siloto RM, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM. 2006. The accumulation of oleosins determines the size of seed oil bodies in Arabidopsis. Plant Cell 18: 1961–1974. [CrossRef] [PubMed] [Google Scholar]
  • Sturtevant D, Lu S, Zhou ZW, et al. 2020. The genome of jojoba (Simmondsia chinensis): a taxonomically isolated species that directs wax ester accumulation in its seeds. Sci Adv 6: eaay 3240. [CrossRef] [Google Scholar]
  • Taurino M, Costantini S, De Domenico S, et al. 2018. SEIPIN proteins mediate lipid droplet biogenesis to promote pollen transmission and reduce seed dormancy. Plant Physiol 176: 1531–1546. [CrossRef] [PubMed] [Google Scholar]
  • Taylor DC, Zhang Y, Kumar A, et al. 2009. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 87: 533–543. [CrossRef] [Google Scholar]
  • Tellier F, Maia-Grondard A, Schmitz-Afonso I, Faure JD. 2014. Comparative plant sphingolipidomic reveals specific lipids in seeds and oil. Phytochemistry 103: 50–58. [CrossRef] [PubMed] [Google Scholar]
  • Tian R, Wang F, Zheng Q, Niza VMAGE, Downie AB, Perry SE. 2020. Direct and indirect targets of the Arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3. Plant J 103: 1679–1694. [CrossRef] [PubMed] [Google Scholar]
  • Troncoso-Ponce MA, Barthole G, Tremblais G, et al. 2016a. Transcriptional activation of two delta-9 palmitoyl-ACP desaturase genes by MYB115 and MYB118 is critical for biosynthesis of omega-7 monounsaturated fatty acids in the endosperm of Arabidopsis seeds. Plant Cell 28: 2666–2682. [CrossRef] [PubMed] [Google Scholar]
  • Troncoso-Ponce MA, Nikovics K, Marchive C, Lepiniec L, Baud S. 2016b. New insights on the organization and regulation of the fatty acid biosynthetic network in the model higher plant Arabidopsis thaliana. Biochimie 120: 3–8. [CrossRef] [PubMed] [Google Scholar]
  • Turchetto-Zolet AC, Christoff AP, Kulcheski FR, Loss-Morais G, Margis R, Margis-Pinheiro M. 2016. Diversity and evolution of plant diacylglycerol acyltransferase (DGATS) unveiled by phylogenetic, gene structure and expression analyses. Genet Mol Biol 39: 524–538. [CrossRef] [PubMed] [Google Scholar]
  • Valitova JN, Sulkarnayeva AG, Minibayeva FV. 2016. Plant sterols: Diversity, biosynthesis, and physiological functions. Biochemistry (Mosc) 81: 819–834. [PubMed] [Google Scholar]
  • van Erp H, Bates PD, Burgal J, Shockey J, Browse J. 2011. Castor phospholipid: Diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol 155: 683–693. [CrossRef] [PubMed] [Google Scholar]
  • Voelker T, Kinney AJ. 2001. Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Physiol Plant Mol Biol 52: 335–361. [CrossRef] [PubMed] [Google Scholar]
  • Vogel PA, Bayon de Noyer S, Park H, et al. 2019. Expression of the Arabidopsis WRINKLED 1 transcription factor leads to higher accumulation of palmitate in soybean seed. Plant Biotechnol J 17: 1369–1379. [CrossRef] [PubMed] [Google Scholar]
  • Wang L, Wang T, Fehr WR. 2006. Effect of seed development stage on sphingolipid and phospholipid contents in soybean seeds. J Agric Food Chem 54: 7812–7816. [CrossRef] [PubMed] [Google Scholar]
  • Wenning L, Yu T, David F, Nielsen J, Siewers V. 2017. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae. Biotechnol Bioeng 114: 1025–1035. [CrossRef] [PubMed] [Google Scholar]
  • Wenning L, Ejsing CS, David F, Sprenger RR, Nielsen J, Siewers V. 2019. Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis. Microb Cell Fact 18: 49. [CrossRef] [PubMed] [Google Scholar]
  • Weselake RJ, Shah S, Tang M, et al. 2008. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot 59: 3543–3549. [CrossRef] [PubMed] [Google Scholar]
  • Woodfield HK, Sturtevant D, Borisjuk L, et al. 2017. Spatial and temporal mapping of key lipid species in brassica napus seeds. Plant Physiol 173: 1998–2009. [CrossRef] [PubMed] [Google Scholar]
  • Wu P, Xu X, Li J, et al. 2021. Seed-specific overexpression of cotton GhDGAT1 gene leads to increased oil accumulation in cottonseed. The Crop Journal 9: 487–490. [CrossRef] [Google Scholar]
  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E. 2001. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276: 33540–33546. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y, Caldo KMP, Pal-Nath D, et al. 2018. Properties and biotechnological applications of acyl-CoA: Diacylglycerol acyltransferase and phospholipid: Diacylglycerol acyltransferase from terrestrial plants and microalgae. Lipids 53: 663–688. [CrossRef] [PubMed] [Google Scholar]
  • Yu D, Hornung E, Iven T, Feussner I. 2018. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes. Biotechnol Biofuels 11: 53. [CrossRef] [PubMed] [Google Scholar]
  • Yu L, Fan J, Zhou C, Xu C. 2021. Sterols are required for the coordinated assembly of lipid droplets in developing seeds. Nat Commun 12: 5598. [CrossRef] [PubMed] [Google Scholar]
  • Zhang M, Fan J, Taylor DC, Ohlrogge JB. 2009. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21: 3885–3901. [Google Scholar]
  • Zhang TT, He H, Xu CJ, et al. 2021. Overexpression of type 1 and 2 diacylglycerol acyltransferase genes (JcDGAT1 and JcDGAT2) enhances oil production in the woody perennial biofuel plant Jatropha curcas. Plants (Basel) 10: 69 [Google Scholar]
  • Zhao L, Katavic V, Li F, Haughn GW, Kunst L. 2010. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J 64: 1048–1058. [CrossRef] [PubMed] [Google Scholar]
  • Zhu LH, Krens F, Smith MA, et al. 2016. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci Rep 6: 22181. [CrossRef] [PubMed] [Google Scholar]
  • Zienkiewicz K, Zienkiewicz A. 2020. Degradation of lipid droplets in plants and algae-right time, many paths, one goal. Front Plant Sci 11: 579019. [CrossRef] [PubMed] [Google Scholar]
  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC. 1999. The Arabidopsis thaliana tag1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19: 645–653. [CrossRef] [PubMed] [Google Scholar]
  • Zulu NN, Popko J, Zienkiewicz K, Tarazona P, Herrfurth C, Feussner I. 2017. Heterologous co-expression of a yeast diacylglycerol acyltransferase (ScDGA1) and a plant oleosin (AtOLEO3) as an efficient tool for enhancing triacylglycerol accumulation in the marine diatom Phaeodactylum tricornutum. Biotechnol Biofuels 10: 187. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.