Issue |
OCL
Volume 28, 2021
Lipids from aquatic environments / Lipides issus des milieux aquatiques
|
|
---|---|---|
Article Number | 57 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/ocl/2021045 | |
Published online | 08 December 2021 |
- Abomohra AE-F, Shang H, El-Sheekh M, et al. 2019. Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production. Bioresour Technol 288: 121514. https://doi.org/10.1016/j.biortech.2019.121514. [Google Scholar]
- Acién FG, Fernández JM, Magán JJ, Molina E. 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv, Special Issue on ACB 2011(30): 1344–1353. https://doi.org/10.1016/j.biotechadv.2012.02.005. [Google Scholar]
- Aguilera-Sáez LM, Abreu AC, Camacho-Rodríguez J, et al. 2019. NMR metabolomics as an effective tool to unravel the effect of light intensity and temperature on the composition of the marine microalgae Isochrysis galbana. J Agric Food Chem 67: 3879–3889. https://doi.org/10.1021/acs.jafc.8b06840. [CrossRef] [PubMed] [Google Scholar]
- Aketo T, Hoshikawa Y, Nojima D, et al. 2020. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. J Biosci Bioeng 129: 565–572. https://doi.org/10.1016/j.jbiosc.2019.12.004. [CrossRef] [PubMed] [Google Scholar]
- Almarashi JQM, El-Zohary SE, Ellabban MA, Abomohra AE-F. 2020. Enhancement of lipid production and energy recovery from the green microalga Chlorella vulgaris by inoculum pretreatment with low-dose cold atmospheric pressure plasma (CAPP). Energy Convers Manag 204: 112314. https://doi.org/10.1016/j.enconman.2019.112314. [Google Scholar]
- Amini Khoeyi Z, Seyfabadi J, Ramezanpour Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquacult Int 20: 41–49. https://doi.org/10.1007/s10499-011-9440-1. [CrossRef] [Google Scholar]
- An M, Gao L, Zhao W, Chen W, Li M. 2020. Effects of nitrogen forms and supply mode on lipid production of microalga Scenedesmus obliquus. Energies 13: 697. https://doi.org/10.3390/en13030697. [CrossRef] [Google Scholar]
- Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM. 2019. Co-culturing of oleaginous microalgae and yeast: Paradigm shift towards enhanced lipid productivity. Environ Sci Pollut Res 26: 16952–16973. https://doi.org/10.1007/s11356-019-05138-6. [CrossRef] [PubMed] [Google Scholar]
- Aziz MMA, Kassim KA, Shokravi Z, et al. 2020. Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review. Renew Sustain Energy Rev 119: 109621. https://doi.org/10.1016/j.rser.2019.109621. [CrossRef] [Google Scholar]
- Binnal P, Babu PN. 2017. Statistical optimization of parameters affecting lipid productivity of microalga Chlorella protothecoides cultivated in photobioreactor under nitrogen starvation. South Afr J Chem Eng 23: 26–37. https://doi.org/10.1016/j.sajce.2017.01.001. [CrossRef] [Google Scholar]
- Cao J, Yuan H, Li B, Yang J. 2014. Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152: 177–184. https://doi.org/10.1016/j.biortech.2013.10.084. [CrossRef] [PubMed] [Google Scholar]
- Chen YH, Walker TH. 2012. Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids. Bioresour Technol 114: 512–517. [CrossRef] [PubMed] [Google Scholar]
- Chen G-Q, Jiang Y, Chen F. 2008. Salt-induced alterations in lipid composition of diatom Nitzschia laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol 44: 1309–1314. https://doi.org/10.1111/j.1529-8817.2008.00565.x. [CrossRef] [PubMed] [Google Scholar]
- Chen C-Y, Lee M-H, Dong C-D, Leong YK, Chang J-S. 2020a. Enhanced production of microalgal lipids using a heterotrophic marine microalga Thraustochytrium sp. BM2. Biochem Eng J 154: 107429. https://doi.org/10.1016/j.bej.2019.107429. [Google Scholar]
- Chen C-Y, Lee M-H, Leong YK, Chang J-S, Lee D-J. 2020b. Biodiesel production from heterotrophic oleaginous microalga Thraustochytrium sp. BM2 with enhanced lipid accumulation using crude glycerol as alternative carbon source. Bioresour Technol 306: 123113. https://doi.org/10.1016/j.biortech.2020.123113. [PubMed] [Google Scholar]
- Chi Z, Pyle D, Wen Z, Frear C, Chen S. 2007. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42: 1537–1545. https://doi.org/10.1016/j.procbio.2007.08.008. [CrossRef] [Google Scholar]
- Chiranjeevi P, Mohan SV. 2016. Critical parametric influence on microalgae cultivation towards maximizing biomass growth with simultaneous lipid productivity. Renew Energy 98: 64–71. https://doi.org/10.1016/j.renene.2016.03.063. [CrossRef] [Google Scholar]
- Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100: 833–838. https://doi.org/10.1016/j.biortech.2008.06.061. [CrossRef] [PubMed] [Google Scholar]
- Cho D-H, Ramanan R, Heo J, et al. 2015. Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community. Bioresour Technol 175: 578–585. https://doi.org/10.1016/j.biortech.2014.10.159. [CrossRef] [PubMed] [Google Scholar]
- Choi H-J, Yu S-W. 2015. Influence of crude glycerol on the biomass and lipid content of microalgae. Biotechnol Biotechnol Equip 29: 506–513. https://doi.org/10.1080/13102818.2015.1013988. [CrossRef] [Google Scholar]
- Chu F, Cheng J, Zhang X, Ye Q, Zhou J. 2019. Enhancing lipid production in microalgae Chlorella PY-ZU1 with phosphorus excess and nitrogen starvation under 15% CO2 in a continuous two-step cultivation process. Chem Eng J 375: 121912. https://doi.org/10.1016/j.cej.2019.121912. [Google Scholar]
- Chu R, Li S, Zhu L, et al. 2021. A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment and biofuel production. Renew Sustain Energy Rev 139: 110689. https://doi.org/10.1016/j.rser.2020.110689. [PubMed] [Google Scholar]
- Ding W, Zhao Y, Xu J-W, et al. 2018. Melatonin: A multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis. J Agric Food Chem 66: 7701–7711. https://doi.org/10.1021/acs.jafc.8b02178. [CrossRef] [PubMed] [Google Scholar]
- Duan X, Ren GY, Liu LL, Zhu WX. 2012. Salt-induced osmotic stress for lipid overproduction in batch culture of Chlorella vulgaris. Afr J Biotechnol 11: 7072–7078. https://doi.org/10.4314/ajb.v11i27. [Google Scholar]
- Ebrahimian A, Kariminia H-R, Vosoughi M. 2014. Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renew Energy 71: 502–508. https://doi.org/10.1016/j.renene.2014.05.031. [CrossRef] [Google Scholar]
- Esakkimuthu S, Krishnamurthy V, Wang S, Hu X, Swaminathan K, Abomohra AE-F. 2020. Application of p-coumaric acid for extraordinary lipid production in Tetradesmus obliquus: A sustainable approach towards enhanced biodiesel production. Renew Energy 157: 368–376. https://doi.org/10.1016/j.renene.2020.05.005. [CrossRef] [Google Scholar]
- Feng P, Deng Z, Fan L, Hu Z. 2012. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J Biosci Bioeng 114: 405–410. https://doi.org/10.1016/j.jbiosc.2012.05.007. [CrossRef] [PubMed] [Google Scholar]
- Gao F, Yang H-L, Li C, et al. 2019. Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. Bioresour Technol 282: 118–124. https://doi.org/10.1016/j.biortech.2019.03.011. [CrossRef] [PubMed] [Google Scholar]
- Gim GH, Ryu J, Kim MJ, Kim PI, Kim SW. 2016. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. J Ind Microbiol Biotechnol 43: 605–616. https://doi.org/10.1007/s10295-016-1741-y. [CrossRef] [PubMed] [Google Scholar]
- Gupta S, Pawar SB. 2018. Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application: effects of scale of cultivation and light spectrum on reduction of α-linolenic acid. Bioprocess Biosyst Eng 41: 531–542. https://doi.org/10.1007/s00449-017-1888-6. [CrossRef] [PubMed] [Google Scholar]
- Han X, Song X, Li F, Lu Y. 2020. Improving lipid productivity by engineering a control-knob gene in the oleaginous microalga Nannochloropsis oceanica. Metab Eng Commun 11: e00142. https://doi.org/10.1016/j.mec.2020.e00142. [PubMed] [Google Scholar]
- Higgins BT, VanderGheynst JS. 2014. Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors. PLOS ONE 9: e96807. https://doi.org/10.1371/journal.pone.0096807. [CrossRef] [PubMed] [Google Scholar]
- Higgins BT, Gennity I, Samra S, Kind T, Fiehn O, VanderGheynst JS. 2016. Cofactor symbiosis for enhanced algal growth, biofuel production, and wastewater treatment. Algal Res 17: 308–315. https://doi.org/10.1016/j.algal.2016.05.024. [CrossRef] [Google Scholar]
- Ho S-H, Chen W-M, Chang J-S. 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101: 8725–8730. https://doi.org/10.1016/j.biortech.2010.06.112. [CrossRef] [PubMed] [Google Scholar]
- Hoffmann M, Marxen K, Schulz R, Vanselow KH. 2010. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar Drugs 8: 2526–2545. https://doi.org/10.3390/md8092526. [CrossRef] [PubMed] [Google Scholar]
- Hsieh C-H, Wu W-T. 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100: 3921–3926. https://doi.org/10.1016/j.biortech.2009.03.019. [CrossRef] [PubMed] [Google Scholar]
- Huo S, Basheer S, Liu F, et al. 2020. Bacterial intervention on the growth, nutrient removal and lipid production of filamentous oleaginous microalgae Tribonema sp. Algal Res 52: 102088. https://doi.org/10.1016/j.algal.2020.102088. [Google Scholar]
- James GO, Hocart CH, Hillier W, Price GD, Djordjevic MA. 2013. Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii. Bioresour Technol 127: 441–447. https://doi.org/10.1016/j.biortech.2012.09.090. [CrossRef] [PubMed] [Google Scholar]
- Janssen M, de Winter M, Tramper J, Mur LR, Snel J, Wijffels RH. 2000. Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. J Biotechnol 78: 123–137. https://doi.org/10.1016/s0168-1656(99)00233-3. [CrossRef] [PubMed] [Google Scholar]
- Jiang H, Gao K. 2004. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum Tricornutum (Bacillariophyceae) 1. J Phycol 40: 651–654. https://doi.org/10.1111/j.1529-8817.2004.03112.x. [CrossRef] [Google Scholar]
- Jiang L, Pei H, Hu W, Han F, Zhang L, Hou Q. 2015. Effect of diethyl aminoethyl hexanoate on the accumulation of high-value biocompounds produced by two novel isolated microalgae. Bioresour Technol 197: 178–184. https://doi.org/10.1016/j.biortech.2015.08.068. [CrossRef] [PubMed] [Google Scholar]
- Ju J-H, Ko D-J, Heo S-Y, et al. 2020. Regulation of lipid accumulation using nitrogen for microalgae lipid production in Schizochytrium sp. A BC101. Renew Energy 153: 580–587. https://doi.org/10.1016/j.renene.2020.02.047. [CrossRef] [Google Scholar]
- Kaewkannetra P, Enmak P, Chiu T. 2012. The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol Bioproc E 17: 591–597. https://doi.org/10.1007/s12257-011-0533-5. [CrossRef] [Google Scholar]
- Kang NK, Lee B, Choi G-G, et al. 2014. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J Chem Eng 31: 861–867. https://doi.org/10.1007/s11814-013-0258-6. [CrossRef] [Google Scholar]
- Khotimchenko SV, Yakovleva IM. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 73–79. https://doi.org/10.1016/j.phytochem.2004.10.024. [CrossRef] [PubMed] [Google Scholar]
- Khozin-Goldberg I, Cohen Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696–701. https://doi.org/10.1016/j.phytochem.2006.01.010. [CrossRef] [PubMed] [Google Scholar]
- Kim S, Moon M, Kwak M, Lee B, Chang YK. 2018. Statistical optimization of light intensity and CO2 concentration for lipid production derived from attached cultivation of green microalga Ettlia sp. Sci Rep 8: 15390. https://doi.org/10.1038/s41598-018-33793-1. [PubMed] [Google Scholar]
- Kwak HS, Kim JYH, Woo HM, Jin E, Min BK, Sim SJ. 2016. Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal Res 19: 215–224. https://doi.org/10.1016/j.algal.2016.09.003. [CrossRef] [Google Scholar]
- Lakshmikandan M, Murugesan AG, Wang S, Abomohra AE-F, Jovita PA, Kiruthiga S. 2020. Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J Clean Prod 247: 119398. https://doi.org/10.1016/j.jclepro.2019.119398. [CrossRef] [Google Scholar]
- Lakshmikandan M, Wang S, Murugesan AG, Saravanakumar M, Selvakumar G. 2021. Co-cultivation of Streptomyces and microalgal cells as an efficient system for biodiesel production and bioflocculation formation. Bioresour Technol 332: 125118. https://doi.org/10.1016/j.biortech.2021.125118. [CrossRef] [PubMed] [Google Scholar]
- Li Y, Mu J, Chen D, et al. 2013. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation. Bioresour Technol 148: 283–292. https://doi.org/10.1016/j.biortech.2013.08.153. [CrossRef] [PubMed] [Google Scholar]
- Li D, Amoah PK, Chen B, et al. 2019. Feasibility of growing Chlorella sorokiniana on cooking cocoon wastewater for biomass production and nutrient removal. Appl Biochem Biotechnol 188: 663–676. https://doi.org/10.1007/s12010-018-02942-7. [CrossRef] [PubMed] [Google Scholar]
- Liu Z-Y, Wang G-C, Zhou B-C. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol, Explor Horizons Biotechnol: Glob Venture 99: 4717–4722. https://doi.org/10.1016/j.biortech.2007.09.073. [Google Scholar]
- Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101: 6797–6804. https://doi.org/10.1016/j.biortech.2010.03.120. [CrossRef] [PubMed] [Google Scholar]
- Mandotra SK, Kumar P, Suseela MR, Nayaka S, Ramteke PW. 2016. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour Technol 201: 222–229. https://doi.org/10.1016/j.biortech.2015.11.042. [CrossRef] [PubMed] [Google Scholar]
- Miranda CT, de Lima DVN, Atella GC, de Aguiar PF, Azevedo SMFO. 2016. Optimization of nitrogen, phosphorus and salt for lipid accumulation of microalgae: Towards the viability of microalgae biodiesel. Nat Sci 8: 557–573. https://doi.org/10.4236/ns.2016.812055. [Google Scholar]
- Norman HA, Thompson GA. 1985. Effects of low-temperature stress on the metabolism of phosphatidylglycerol molecular species in Dunaliella salina. Arch Biochem Biophys 242: 168–175. https://doi.org/10.1016/0003-9861(85)90490-4. [CrossRef] [PubMed] [Google Scholar]
- Nzayisenga JC, Farge X, Groll SL, Sellstedt A. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol Biofuels 13: 4. https://doi.org/10.1186/s13068-019-1646-x. [CrossRef] [PubMed] [Google Scholar]
- Ogawa T, Ogren WL. 1985. Action spectra for accumulation of inorganic carbon in the cyanobacterium, Anabaena variabilis. Photochem Photobiol 41: 583–587. https://doi.org/10.1111/j.1751-1097.1985.tb03530.x. [CrossRef] [Google Scholar]
- Ortiz Montoya EY, Casazza AA, Aliakbarian B, Perego P, Converti A, de Carvalho JCM. 2014. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Biotechnol Prog 30: 916–922. https://doi.org/10.1002/btpr.1885. [CrossRef] [PubMed] [Google Scholar]
- Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S. 2011. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90: 1429–1441. https://doi.org/10.1007/s00253-011-3170-1. [CrossRef] [PubMed] [Google Scholar]
- Park J, Park BS, Wang P, et al. 2017. Phycospheric native bacteria Pelagibaca bermudensis and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in co-cultivation system through mutualistic interaction. Front Plant Sci 8: 289. https://doi.org/10.3389/fpls.2017.00289. [PubMed] [Google Scholar]
- Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N. 2012. Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp, BU M11008: Evaluation for biodiesel production. Biomass Bioenergy 37: 60–66. https://doi.org/10.1016/j.biombioe.2011.12.035. [CrossRef] [Google Scholar]
- Pyle DJ, Garcia RA, Wen Z. 2008. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56: 3933–3939. https://doi.org/10.1021/jf800602s. [CrossRef] [PubMed] [Google Scholar]
- Ra C-H, Kang C-H, Jung J-H, Jeong G-T, Kim S-K. 2016. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresour Technol 212: 254–261. https://doi.org/10.1016/j.biortech.2016.04.059. [CrossRef] [PubMed] [Google Scholar]
- Rai V, Muthuraj M, Gandhi MN, Das D, Srivastava S. 2017. Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae. Sci Rep 7: 45732. https://doi.org/10.1038/srep45732. [PubMed] [Google Scholar]
- Rajvanshi M, Shankar Sagaram S. 2019. Sustainable downstream processing of microalgae for industrial application. CRC Press. [Google Scholar]
- Ren H-Y, Liu B-F, Kong F, Zhao L, Xie G-J, Ren N-Q. 2014. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour Technol 169: 763–767. https://doi.org/10.1016/j.biortech.2014.06.062. [CrossRef] [PubMed] [Google Scholar]
- Ren H-Y, Zhu J-N, Kong F, et al. 2019. Ultrasonic enhanced simultaneous algal lipid production and nutrients removal from non-sterile domestic wastewater. Energy Convers Manag 180: 680–688. https://doi.org/10.1016/j.enconman.2018.11.028. [CrossRef] [Google Scholar]
- Sakurai T, Aoki M, Ju X, et al. 2016. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria. Bioresour Technol 200: 861–866. https://doi.org/10.1016/j.biortech.2015.11.014. [CrossRef] [PubMed] [Google Scholar]
- Salama E-S, Jeon B-H, Chang SW, et al. 2017. Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J Clean Prod 168: 1017–1024. https://doi.org/10.1016/j.jclepro.2017.09.057. [CrossRef] [Google Scholar]
- Sato A, Matsumura R, Hoshino N, Tsuzuki M, Sato N. 2014. Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00444. [CrossRef] [PubMed] [Google Scholar]
- Singh J, Jain D, Agarwal P, Singh RP. 2020. Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07. Process Biochem 95: 223–234. https://doi.org/10.1016/j.procbio.2020.02.012. [CrossRef] [Google Scholar]
- Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20: 245–251. https://doi.org/10.1007/s10811-007-9233-0. [CrossRef] [Google Scholar]
- Song X, Zhao Y, Li T, et al. 2019. Enhancement of lipid accumulation in Monoraphidium sp. QLY-1 by induction of strigolactone. Bioresour Technol 288: 121607. https://doi.org/10.1016/j.biortech.2019.121607. [PubMed] [Google Scholar]
- Song X, Zhao Y, Han B, et al. 2020. Strigolactone mediates jasmonic acid-induced lipid production in microalga Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. Bioresour Technol 306: 123107. https://doi.org/10.1016/j.biortech.2020.123107. [CrossRef] [PubMed] [Google Scholar]
- Spalding MH, Critchley C, Govindjee, Orgren WL. 1984. Influence of carbon dioxide concentration during growth on fluorescence induction characteristics of the Green Alga Chlamydomonas reinhardii. Photosynth Res 5: 169–176. https://doi.org/10.1007/BF00028529. [CrossRef] [PubMed] [Google Scholar]
- Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, Chairez I. 2020. Simultaneous optimization of biomass and metabolite production by a microalgae-yeast co-culture under inorganic micronutrients. Bioenergy Res 13: 974–985. https://doi.org/10.1007/s12155-020-10116-9. [CrossRef] [Google Scholar]
- Sun X, Cao Y, Xu H, et al. 2014. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol 155: 204–212. https://doi.org/10.1016/j.biortech.2013.12.109. [CrossRef] [PubMed] [Google Scholar]
- Takagi M, Karseno, Yoshida T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101: 223–226. https://doi.org/10.1263/jbb.101.223. [CrossRef] [PubMed] [Google Scholar]
- Tan X-B, Yang L-B, Zhang W-W, Zhao X-C. 2020. Lipids production and nutrients recycling by microalgae mixotrophic culture in anaerobic digestate of sludge using wasted organics as carbon source. Bioresour Technol 297: 122379. https://doi.org/10.1016/j.biortech.2019.122379. [PubMed] [Google Scholar]
- Touliabah HE-S, Almutairi AW. 2021. Effect of phytohormones supplementation under nitrogen depletion on biomass and lipid production of Nannochloropsis oceanica for integrated application in nutrition and biodiesel. Sustainability 13: 592. https://doi.org/10.3390/su13020592. [Google Scholar]
- Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A. 1990. Effects of CO2 concentration during growth on fatty acid composition in microalgae 1. Plant Physiol 93: 851–856. [CrossRef] [PubMed] [Google Scholar]
- Udayan A, Sabapathy H, Arumugam M. 2020. Stress hormones mediated lipid accumulation and modulation of specific fatty acids in Nannochloropsis oceanica CASA CC201. Bioresour Technol 310: 123437. https://doi.org/10.1016/j.biortech.2020.123437. [CrossRef] [PubMed] [Google Scholar]
- Wan M, Jin X, Xia J, et al. 2014. The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol 98: 9473–9481. https://doi.org/10.1007/s00253-014-6088-6. [CrossRef] [PubMed] [Google Scholar]
- Wang L, Min M, Li Y, et al. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162: 1174–1186. https://doi.org/10.1007/s12010-009-8866-7. [CrossRef] [PubMed] [Google Scholar]
- Wang S-T, Pan Y-Y, Liu C-C, Chuang L-T, Chen C-NN. 2011. Characterization of a green microalga UTEX 2219-4: Effects of photosynthesis and osmotic stress on oil body formation. Bot Stud 52: 305–312. [Google Scholar]
- Wang H, Fu R, Pei G. 2012a. A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr J Microbiol Res 6. https://doi.org/10.5897/AJMR11.1365. [Google Scholar]
- Wang H, Xiong H, Hui Z, Zeng X. 2012b. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol 104: 215–220. https://doi.org/10.1016/j.biortech.2011.11.020. [CrossRef] [PubMed] [Google Scholar]
- Wei L, Huang X, Huang Z. 2015. Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chin J Ocean Limnol 33: 99–106. https://doi.org/10.1007/s00343-015-3346-0. [CrossRef] [Google Scholar]
- Wei Z, Wang H, Li X, et al. 2020. Enhanced biomass and lipid production by co-cultivation of Chlorella vulgaris with Mesorhizobium sangaii under nitrogen limitation. J Appl Phycol 32: 233–242. https://doi.org/10.1007/s10811-019-01924-4. [CrossRef] [Google Scholar]
- Xie Z, Lin W, Luo J. 2021. Co-cultivation of microalga and xylanolytic bacterium by a continuous two-step strategy to enhance algal lipid production. Bioresour Technol 330: 124953. https://doi.org/10.1016/j.biortech.2021.124953. [PubMed] [Google Scholar]
- Xin L, Hong-ying H, Jia Y. 2010a. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnology, Special Issue on Biocatalysis and Agricultural Biotechnology 27(3): 59–63. https://doi.org/10.1016/j.nbt.2009.11.006. [Google Scholar]
- Xin L, Hong-ying H, Ke G, Ying-Xue S. 2010b. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101: 5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016. [CrossRef] [PubMed] [Google Scholar]
- Xin L, Hong-Ying H, Yu-Ping Z. 2011. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour Technol 102: 3098–3102. https://doi.org/10.1016/j.biortech.2010.10.055. [CrossRef] [PubMed] [Google Scholar]
- Yang H, He Q, Rong J, Xia L, Hu C. 2014. Rapid neutral lipid accumulation of the alkali-resistant oleaginous Monoraphidium dybowskii LB50 by NaCl induction. Bioresour Technol 172: 131–137. https://doi.org/10.1016/j.biortech.2014.08.066. [CrossRef] [PubMed] [Google Scholar]
- Yang J, Cao J, Xing G, Yuan H. 2015. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175: 537–544. https://doi.org/10.1016/j.biortech.2014.10.124. [CrossRef] [PubMed] [Google Scholar]
- Yeesang C, Cheirsilp B. 2011. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102: 3034–3040. https://doi.org/10.1016/j.biortech.2010.10.013. [CrossRef] [PubMed] [Google Scholar]
- Yeh K-L, Chang J-S. 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol 105: 120–127. https://doi.org/10.1016/j.biortech.2011.11.103. [CrossRef] [PubMed] [Google Scholar]
- Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S. 2014. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLOS ONE 9: e91957. https://doi.org/10.1371/journal.pone.0091957. [CrossRef] [PubMed] [Google Scholar]
- Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M. 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol, Supplement Issue on Recent Developments of Biomass Conversion Technologies 101: S71–S74. https://doi.org/10.1016/j.biortech.2009.03.030. [Google Scholar]
- Zhao Y, Song X, Zhong D, Yu L, Yu X. 2020. γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress. Bioresour Technol 297: 122500. https://doi.org/10.1016/j.biortech.2019.122500. [PubMed] [Google Scholar]
- Zhao Y, Song X, Zhao P, Li T, Xu J-W, Yu X. 2021. Role of melatonin in regulation of lipid accumulation, autophagy and salinity-induced oxidative stress in microalga Monoraphidium sp. QLY-1. Algal Res 54: 102196. https://doi.org/10.1016/j.algal.2021.102196. [Google Scholar]
- Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. 2014. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152: 292–298. https://doi.org/10.1016/j.biortech.2013.10.092. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.