Volume 28, 2021
Green and white biotechnologies in the fields of lipids and oil- and proteincrops / Biotechnologies vertes et blanches dans les domaines des lipides et oléoprotéagineux
Article Number 37
Number of page(s) 8
Published online 08 July 2021
  • Alves PLDCA, Magalhães ACN, Barja PR. 2002. The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. Bot Rev 68(2): 193–208. [Google Scholar]
  • Amini Khoeyi Z, Seyfabadi J, Ramezanpour Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20(1): 41–49. [Google Scholar]
  • Becker EW. 2007. Micro-algae as a source of protein. Biotechnol Adv 25(2): 207–220. [Google Scholar]
  • Bennett A, Bogorad L. 1973 Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58(2): 419–435. [Google Scholar]
  • Bezerra RP, Montoya EYO, Sato S, Perego P, de Carvalho JCM, Converti A. 2011. Effects of light intensity and dilution rate on the semicontinuous cultivation of Arthrospira (Spirulina) platensis. A kinetic monod-type approach. Bioresour Technol 102(3): 3215–3219. [Google Scholar]
  • Bhat VB, Madyastha KM. 2000. C-Phycocyanin: A potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 275(1): 20–25. [Google Scholar]
  • Biggs W. 1986. Radiation measurement. In: Gensler WG, ed. Advanced agricultural instrumentation. Dordrecht (Netherlands): Springer, pp. 3–20. [Google Scholar]
  • Blanken W, Cuaresma M, Wijffels RH, Janssen M. 2013. Cultivation of microalgae on artificial light comes at a cost. Algal Res 2(4): 333–340. [Google Scholar]
  • Boussiba S, Richmond AE. 1980. C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125(1-2): 143–147. [Google Scholar]
  • Carvalho AP, Silva SO, Baptista, JM, Malcata FX. 2011. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl Microbiol Biotechnol 89(5): 1275–1288. [Google Scholar]
  • Chen HB, Wu JY, Wang CF, et al. 2010. Modelling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53(1): 52–56. [Google Scholar]
  • Chen CY, Kao PC, Tsai CJ, Lee DJ, Chang JS. 2013. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol 145: 307–312. [Google Scholar]
  • Chen’v F, Zhang Y, Guo S. 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18(5): 603–608. [Google Scholar]
  • Chojnacka K, Noworyta A. 2004. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34(5): 461–465. [Google Scholar]
  • Danesi EDG, Rangel-Yagui CO, Carvalho JCM, Sato S. 2004. Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 26(4): 329–335. [Google Scholar]
  • Danesi EDG, Rangel-Yagui CO, Sato S, Carvalho JCM. 2011. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Braz J Microbiol 42(1): 362–373. [Google Scholar]
  • Demmig-Adams B, Adams WW. 1992. Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43(1): 599–626. [Google Scholar]
  • Dubinsky Z. 2013. Photosynthesis. InTech. [Google Scholar]
  • Galasso C, Gentile A, Orefice I, et al. 2019. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients 11(6): 1226. [Google Scholar]
  • Glemser M, Heining M, Schmidt J, et al. 2016. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: Current state and perspectives. Appl Microbiol Biotechnol 100(3): 1077–1088. [Google Scholar]
  • Hendry GAF, Houghton JD, Brown SB. 1987. The degradation of chlorophyll-a biological enigma. New Phytologist 107(2): 255–302. [Google Scholar]
  • Koru E. 2012. Earth food Spirulina (Arthrospira): Production and quality standards. In: El-Samragy Y, ed. Food additive. InTech, pp. 191–202. [Google Scholar]
  • Kumar M, Kulshreshtha J, Singh GP. 2011. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Braz J Microbiol 42(3): 1128–1135. [Google Scholar]
  • Kumari A, Pathak AK, Guria C. 2015. Effect of light emitting diodes on the cultivation of Spirulina platensis using NPK-10:26:26 complex fertilizer: Spirulina growth in NPK fertilizer & LED. Phycolog Res 63(4): 274–283. [Google Scholar]
  • Lee SH, Lee JE, Kim Y, Lee SY. 2016. The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Appl Biochem Biotechnol 178(2): 382–395. [Google Scholar]
  • Liao Q, Li L, Chen R, Zhu X. 2014. A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. Bioresour Technol 161: 186–191. [Google Scholar]
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth Enzymol 148: 350–382. [Google Scholar]
  • Madhyastha HK, Vatsala TM. 2007. Pigment production in Spirulina fussiformis in different photophysical conditions. Biomol Eng 24(3): 301–305. [Google Scholar]
  • Madhyastha HK, Sivashankari S, Vatsala TM. 2009. C-phycocyanin from Spirulina fussiformis exposed to blue light demonstrates higher efficacy of in vitro antioxidant activity. Biochem Eng J 43(2): 221–224. [Google Scholar]
  • McCree KJ. 1971. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9: 191–216. [Google Scholar]
  • Niangoran U, Tian F, Canale L, Haba CT, Buso D, Zissis G. 2018. Study of the LEDs spectrums influence on the Spirulina platensis growth in batch culture. In: 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–4. [Google Scholar]
  • Pareek A, Srivastava P. 2001. Optimum photoperiod for the growth of Spirulina platensis. J Phytol Res 14(2): 219–220. [Google Scholar]
  • Patel AK, Jae MJ, Min EH, Sang JS. 2019. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour Technol 282: 245–253. [Google Scholar]
  • Qiang H, Zarmi Y, Richmond A. 1998. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 33(2): 165–171. [Google Scholar]
  • Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M. 2008. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J Chem Technol Biotechnol 83(6): 842–848. [Google Scholar]
  • Richmond A, Cheng-Wu Z, Zarmi Y. 2003. Efficient use of strong light for high photosynthetic productivity: Interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20(4-6): 229–236. [Google Scholar]
  • Rizzo RF, dos Santos BDNC, de Castro GFPDS, et al. 2015. Production of phycobiliproteins by Arthrospira platensis under different lightconditions for application in food products. Food Sci Technol (Campinas) 35(2): 247–252. [Google Scholar]
  • Rodríguez-Concepcíon M, Avalos J, Bonet ML, et al. 2018. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progr Lipid Res 70: 62–93. [Google Scholar]
  • Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. 2003. C-Phycocyanin: A Biliprotein with Antioxidant, Anti-Inflammatory and Neuroprotective Effects. Curr Protein Peptide Sci 4(3): 207–216. [Google Scholar]
  • Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS. 2014. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32(8): 422–430. [Google Scholar]
  • Tian F, Buso D, Wang T, Lopes M, Niangoran U, Zissis G. 2018. Effect of Red and Blue LEDs on the production of phycocyanin by Spirulina platensis based on photosynthetically active radiation. J Sci Technol Light 41(0): 148–152. [Google Scholar]
  • Wahidin S, Idris A, Shaleh SRM. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129: 7–11. [Google Scholar]
  • Wang CY, Fu CC, Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37(1): 21–25. [Google Scholar]
  • Xue S, Su Z, Cong W. 2011. Growth of Spirulina platensis enhanced under intermittent illumination. J Biotechnol 151(3): 271–277. [Google Scholar]
  • Zarrouk C. 1966. Contribution à l’étude d’une cyanophycée Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler. Université de Paris. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.